Journal of Electronic Materials

, Volume 39, Issue 10, pp 2237–2242 | Cite as

In Situ Raman Analysis of a Bulk GaN-Based Schottky Rectifier Under Operation

  • Hui Xu
  • Siddharth Alur
  • Yaqi Wang
  • An-Jen Cheng
  • Kilho Kang
  • Yogeshkumar Sharma
  • Minseo Park
  • Claude Ahyi
  • John Williams
  • Chaokang Gu
  • Andrew Hanser
  • Tanya Paskova
  • Edward A. Preble
  • Keith R. Evans
  • Yi Zhou
Article

We have fabricated vertical Schottky rectifiers based on a free-standing GaN substrate and have measured the temperature of the device under operation in situ using micro-Raman spectroscopy. The n-type bulk GaN wafer with 500 μm thickness was prepared using hydride vapor-phase epitaxy. The carrier concentration of the wafer was ~2.4 × 1016 cm−3. Semitransparent Ni and multilayered Ti/Al/Pt/Au were used to make a Schottky and a full backside ohmic contact, respectively. In this investigation, Raman spectra were collected as a function of the forward power applied to the Schottky diode. A systematic shift and broadening of the Raman E 2 peak were observed as a function of increasing bias. This was caused by device heating due to the increase in current as the forward bias was increased. It was demonstrated that micro-Raman spectroscopy can serve as an excellent in situ diagnostic tool for analyzing thermal characteristics of the GaN Schottky diode. Moreover, the strain caused by the piezoelectric effect was calculated to lead to a shift of the Raman peak at the level of 0.001 cm−1. This confirmed that the observed Raman peak shift was predominantly produced by a thermal not piezoelectric effect.

Keywords

GaN Schottky rectifier Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Mr. Fillmer for financial support from Auburn University’s Natural Resources Management and Development Institute (NRMDI). The work was also partially funded by National Science Foundation through NCSU’s FREEDM Systems Center. A partial support from USDA through AUDFS is also greatly acknowledged. We also want to thank Mrs. Tamara Isaacs-Smith for her technical assistance and manuscript editing.

References

  1. 1.
    T. Beechem, A. Christensen, S. Graham, and D. Green, J. Appl. Phys. 103, 124501 (2008).CrossRefADSGoogle Scholar
  2. 2.
    Y. Ohno, M. Akita, S. Kishimoto, K. Maezawa, and T. Mizutani, Jpn. J. Appl. Phys. 41, L452 (2002).CrossRefADSGoogle Scholar
  3. 3.
    I. Ahmad, V. Kasisomayajula, M. Holtz, J.B. Berg, S.R. Kurtz, C.P. Tigges, A.A. Alleman, and A.G. Baca, Appl. Phys. Lett. 86, 173503 (2005).CrossRefADSGoogle Scholar
  4. 4.
    W.D. Hu, X.S. Chen, Z.J. Quan, C.S. Xia, W. Lu, and P.D. Ye, J. Appl. Phys. 100, 074501 (2006).CrossRefADSGoogle Scholar
  5. 5.
    I. Ahmad, V. Kasisomayajula, D.Y. Song, L. Tian, J.M. Berg, and M. Holtz, J. Appl. Phys. 100, 113718 (2006).CrossRefADSGoogle Scholar
  6. 6.
    J. Kim, J.A. Freitas Jr., P.B. Klein, S. Jang, F. Ren, and S.J. Pearton, Electrochem. Solid-State Lett. 8, G345 (2005).CrossRefGoogle Scholar
  7. 7.
    Y. Zhou, M. Li, D. Wang, C. Ahyi, C.C. Tin, J. Williams, and M. Park, Appl. Phys. Lett. 88, 113509 (2006).CrossRefADSGoogle Scholar
  8. 8.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2007).Google Scholar
  9. 9.
    D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 2006).Google Scholar
  10. 10.
    J.-I. Chyi, C.-M. Lee, C.-C. Chuo, X.A. Cao, G.T. Dang, A.P. Zhang, F. Ren, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Solid-State Electron. 44, 613 (2000).CrossRefADSGoogle Scholar
  11. 11.
    W. Hayes and R. Laudon, Scattering of Light by Crystals (New York: Wiley, 1978).Google Scholar
  12. 12.
    J.B. Cui, K. Amtmann, J. Ristein, and L. Ley, J. Appl. Phys. 83, 7929 (1998).CrossRefADSGoogle Scholar
  13. 13.
    W.S. Li, Z.X. Shen, Z.C. Feng, and S.J. Chua, J. Appl. Phys. 87, 3332 (2000).CrossRefADSGoogle Scholar
  14. 14.
    H. Tang and I.P. Herman, Phys. Rev. B 43, 2299 (1991).CrossRefADSGoogle Scholar
  15. 15.
    D.Y. Song, M. Basavaraj, S.A. Nikishin, M. Holtz, V. Soukhoveev, A. Usikov, and V. Dmitriev, J. Appl. Phys. 100, 113504 (2006).CrossRefADSGoogle Scholar
  16. 16.
    R.R. Reeber and K. Wang, J. Mater. Res. 15, 40 (2000).CrossRefADSGoogle Scholar
  17. 17.
    M.S. Liu, L.A. Bursill, S. Prawer, K.W. Nugent, Y.Z. Tong, and G.Y. Zhang, Appl. Phys. Lett. 74, 3125 (1999).CrossRefADSGoogle Scholar
  18. 18.
    D.Y. Song, S.A. Nikishin, M. Holtz, V. Soukhoveev, A. Usikov, and V. Dmitriev, J. Appl. Phys. 101, 053535 (2007).CrossRefADSGoogle Scholar
  19. 19.
    M. Balkanski, R.F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).CrossRefADSGoogle Scholar
  20. 20.
    A. Sarua, H. Ji, M. Kuball, M.J. Uren, T. Martin, K.J. Nash, K.P. Hilton, and R.S. Balmer, Appl. Phys. Lett. 88, 103502 (2006).CrossRefADSGoogle Scholar
  21. 21.
    C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E.R. Weber, M.D. Bremster, and R.F. Davis, Phys. Rev. B 54, 17745 (1996).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Hui Xu
    • 1
  • Siddharth Alur
    • 1
  • Yaqi Wang
    • 1
  • An-Jen Cheng
    • 1
  • Kilho Kang
    • 1
  • Yogeshkumar Sharma
    • 1
  • Minseo Park
    • 1
  • Claude Ahyi
    • 1
  • John Williams
    • 1
  • Chaokang Gu
    • 2
  • Andrew Hanser
    • 3
  • Tanya Paskova
    • 3
  • Edward A. Preble
    • 3
  • Keith R. Evans
    • 3
  • Yi Zhou
    • 4
  1. 1.Department of PhysicsAuburn UniversityAuburnUSA
  2. 2.Department of Chemistry and BiochemistryAuburn UniversityAuburnUSA
  3. 3.Kyma Technologies, Inc.RaleighUSA
  4. 4.Department of Electrical EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations