Journal of Electronic Materials

, Volume 39, Issue 9, pp 1476–1481 | Cite as

Synthesis and Electronic Properties of the Misfit Layer Compound [(PbSe)1.00]1[MoSe2]1

  • Colby L. Heideman
  • Raimar Rostek
  • Michael D. Anderson
  • Andrew A. Herzing
  • Ian M. Anderson
  • David C. JohnsonEmail author


An ultralow-thermal-conductivity compound with the ideal formula [(PbSe)1.00]1[MoSe2]1 has been successfully crystallized across a range of compositions. The lattice parameters varied from 1.246 nm to 1.275 nm, and the quality of the observed 00 diffraction patterns varied through the composition region where the structure crystallized. Measured resistivity values ranged over an order of magnitude, from 0.03 Ω m to 0.65 Ω m, and Seebeck coefficients ranged from −181 μV K−1 to 91 μV K−1 in the samples after the initial annealing to form the basic structure. Annealing of samples under a controlled atmosphere of selenium resulted in low conductivities and large negative Seebeck coefficients, suggesting an n-doped semiconductor. Scanning transmission electron microscopy cross-sections confirmed the interleaving of bilayers of PbSe with Se-Mo-Se trilayers. High-angle annular dark-field images revealed an interesting volume defect, where PbSe grew through a region where a layer of MoSe2 would be expected in the perfect structure. Further studies are required to correlate the density of these defects with the observed electrical properties.


Misfit-layered compounds carrier properties thermoelectrics thin films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Office of Naval Research (N0014-07-1-0358) supported this work. Colby Heideman and Michael Anderson acknowledge support from an IGERT fellowship from National Science Foundation Grant DGE-0549503.


  1. 1.
    Y. Gotoh, M. Onoda, J. Akimoto, M. Goto, and Y. Oosawa, Prog. Solid State Chem. 31, 3946 (1996).Google Scholar
  2. 2.
    A. Lafond, C. Deudon, A. Meerschaut, and A. Sulpice, Eur. J. Solid State Inorg. Chem. 31, 967 (1994).Google Scholar
  3. 3.
    G.A. Wiegers, Prog. Solid State Chem. 24, 1 (1996).CrossRefGoogle Scholar
  4. 4.
    J. Rouxel, Y. Moeelo, A. Lafond, F.J. DiSalvo, A. Meerschaut, and R. Roesky, Inorg. Chem. 33, 3358 (1994).CrossRefGoogle Scholar
  5. 5.
    J.-L. Pouchou, Microchim. Acta 138, 133 (2002).CrossRefGoogle Scholar
  6. 6.
    T. Phung, X-ray Spectrom. 37, 608 (2008).CrossRefGoogle Scholar
  7. 7.
    L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958).Google Scholar
  8. 8.
    L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958).Google Scholar
  9. 9.
    S.D. Walck and J.P. McCaffrey, Thin Solid Films 308, 399 (1997).Google Scholar
  10. 10.
    O. Yamashita and N. Sadatomi, Jpn. J. Appl. Phys. 38, 6394 (1999).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Colby L. Heideman
    • 1
  • Raimar Rostek
    • 2
  • Michael D. Anderson
    • 1
    • 3
  • Andrew A. Herzing
    • 3
  • Ian M. Anderson
    • 3
  • David C. Johnson
    • 1
    Email author
  1. 1.Department of Chemistry and Materials Science InstituteUniversity of OregonEugeneUSA
  2. 2.Thermoelektrische SystemeFraunhofer Institut für Physikalische MesstechnikFreiburgGermany
  3. 3.Surface and Microanalysis Science DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations