Journal of Electronic Materials

, Volume 39, Issue 7, pp 1080–1086 | Cite as

Characterization of Dislocations in (112)B HgCdTe/CdTe/Si

  • J. D. Benson
  • L. O. Bubulac
  • P. J. Smith
  • R. N. Jacobs
  • J. K. Markunas
  • M. Jaime-Vasquez
  • L. A. Almeida
  • A. J. Stoltz
  • P. S. Wijewarnasuriya
  • G. Brill
  • Y. Chen
  • U. Lee
  • M. F. Vilela
  • J. Peterson
  • S. M. Johnson
  • D. D. Lofgreen
  • D. Rhiger
  • E. A. Patten
  • P. M. Goetz
Article

The electrical performance of HgCdTe/Si photodiodes is shown not to have a direct relationship with the dislocation density as revealed by defect etching. This has led to an equivalent circuit model to explain the relationship of the dislocation density and the electrical test data. A new (112)B HgCdTe/CdTe/Si and CdTe/Si etch pit density (EPD) etch has been demonstrated. The new etch has been used to look for distinctive features which may be responsible for the poor electrical performance of individual diode pixels. The new etch chemistry also reduces the surface roughness of the etched epilayer and makes EPD determination less problematic. The new (to HgCdTe) technique of electrostatic force microscopy has also been used to analyze the electrical properties of dislocations.

Keywords

HgCdTe/CdTe/Si molecular beam epitaxy atomic force microscopy electrostatic force microscopy etch pit density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).CrossRefADSGoogle Scholar
  2. 2.
    H. Figgemeier, J. Electron. Mater. 32, 588 (2003).CrossRefADSGoogle Scholar
  3. 3.
    G.A. Carini, C. Arnone, A.E. Bolotnikov, G.S. Camarda, R.E. DeWames, J.H. Dinan, J.K. Markunas, B. Raghothamacher, S. Sivananthan, R. Smith, J. Zhao, Z. Zhong, and R.B. James, J. Electron. Mater. 35, 1495 (2006).CrossRefADSGoogle Scholar
  4. 4.
    L.A. Almeida, M. Groenert, J. Markunas, and J.H. Dinan, J. Electron. Mater. 35, 1214 (2006).CrossRefADSGoogle Scholar
  5. 5.
    D. Edwall, E. Piqutte, J. Ellsworth, J. Arias, C.H. Swartz, L. Bai, R.P. Tompkins, N.C. Giles, T.H. Myers, and M. Berding, J. Electron. Mater. 33, 752 (2004).CrossRefADSGoogle Scholar
  6. 6.
    M. Martinka, L.A. Almeida, J.D. Benson, and J.H. Dinan, J. Electron. Mater. 31, 732 (2002).CrossRefADSGoogle Scholar
  7. 7.
    T.J. de Lyon, J.E. Jensen, M.D. Gorwitz, C.A. Cockrum, S.M. Johnson, and G.M. Venzor, J. Electron. Mater. 28, 705 (1999).CrossRefADSGoogle Scholar
  8. 8.
    Y.P. Chen, G. Brill, E.M. Campo, T. Hierl, J.C.M. Hwang, and N.K. Dhar, J. Electron. Mater. 33, 498 (2004).CrossRefADSGoogle Scholar
  9. 9.
    M. Carmody, J.G. Pasko, D. Edwall, M. Darasellia, L.A. Almeida, J. Molstad, J.H. Dinan, J.K. Markunas, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 33, 531 (2004).CrossRefADSGoogle Scholar
  10. 10.
    M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, S. Cabelli, J. Bajaj, L.A. Almeida, J.H. Dinan, M. Groenert, A.J. Stoltz, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 34, 832 (2005).CrossRefADSGoogle Scholar
  11. 11.
    S.M. Johnson, A.A. Buell, M.F. Vilela, J.M. Peterson, J.B. Varesi, M.D. Newton, G.M. Venzor, R.E. Bornfreund, W.A. Radford, E.P.G. Smith, J.P. Rosbeck, T.J. De Lyon, J.E. Jensen, and V. Nathan, J. Electron. Mater. 33, 526 (2004).CrossRefADSGoogle Scholar
  12. 12.
    M. Jaime-Vasquez, M. Martinka, R.N. Jacobs, and J.D. Benson, J. Electron. Mater. 36, 905 (2007).CrossRefADSGoogle Scholar
  13. 13.
    P.J. Taylor, W.A. Jesser, M. Martinka, K.M. Singley, J.H. Dinan, R.T. Lareau, M.C. Wood, and W.W. Clarke III, J. Vac. Sci. Technol. A 17, 1153 (1999).CrossRefADSGoogle Scholar
  14. 14.
    W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Schaake, J. Electron. Mater. 24, 505 (1995).CrossRefADSGoogle Scholar
  15. 15.
    H.F. Schaake and A.J. Lewis, Mater. Res. Soc. Symp. Proc. 14, 301 (1983).Google Scholar
  16. 16.
    J.R. Yang, X.L. Cao, Y.F. Wei, and L. He, J. Electron. Mater. 37, 1241 (2008).CrossRefADSGoogle Scholar
  17. 17.
    E.A. Patten, P.M. Goetz, M.F. Vilela, K. Olsson, D.D. Lofgreen, J.G. Vodicka, and S.M. Johnson, J. Electron. Mater. (to be published).Google Scholar
  18. 18.
    K.V. Ravi, C.J. Varker, and C.E. Volk, J. Electrochem. Soc. 120, 533 (1973).CrossRefGoogle Scholar
  19. 19.
    P.S. Wijewarnasuriya, Y. Chen, G. Brill, N. Dhar, J.D. Benson, L.O. Bubulac, and D. Edwall, J. Electron. Mater. (to be published).Google Scholar
  20. 20.
    L.O. Bubulac, J.D. Benson, A. Wang, L.Wang, R.N. Jacobs, R. Hellmer, T. Golding, J.H. Dinan, M. Carmody, A.J. Stoltz, M. Jaime-Vasquez, L.A. Almeida, P.S. Wijewarnasuriya, M.F. Lee, M.F. Vilela, J. Peterson, S.M. Johnson, D.F. Lofgreen, and D. Rhiger, J. Electron. Mater. (to be published).Google Scholar
  21. 21.
    J.E. Ayers, Hetero-Epitaxy of Semiconductors: Theory, Growth, and Characterization (New York: CRC, 2007), pp. 332–338.CrossRefGoogle Scholar
  22. 22.
    J.D. Benson, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A.J. Stoltz, L.O. Bubulac, M. Groenert, P.S. Wijewarnasuriya, G. Brill, Y. Chen, and U. Lee, J. Electron. Mater. 38, 1771 (2009).CrossRefADSGoogle Scholar
  23. 23.
    J.E. Ayers, Hetero-Epitaxy of Semiconductors: Theory, Growth, and Characterization (New York, NY: CRC Press, 2007), pp. 14-16.Google Scholar
  24. 24.
    Y. Chang, C.R. Becker, C.H. Grein, J. Zhao, C. Fulk, T. Casselman, R. Kiran, X.J. Wang, E. Robinson, S.Y. An, S. Mallick, S. Sivanathan, T. Aoki, C.Z. Wang, D.J. Smith, S. Velicu, J. Zhao, J. Crocco, Y. Chen, G. Brill, P.S. Wijewarnasuriya, N. Dhar, R. Sporken, and V. Nathan, J. Electron. Mater. 37, 1171 (2008).CrossRefADSGoogle Scholar
  25. 25.
    P. Girard, Nanotechnology 12, 485 (2001).CrossRefADSGoogle Scholar

Copyright information

© U.S. Department of Defense 2010

Authors and Affiliations

  • J. D. Benson
    • 1
  • L. O. Bubulac
    • 1
  • P. J. Smith
    • 1
  • R. N. Jacobs
    • 1
  • J. K. Markunas
    • 1
  • M. Jaime-Vasquez
    • 1
  • L. A. Almeida
    • 1
  • A. J. Stoltz
    • 1
  • P. S. Wijewarnasuriya
    • 2
  • G. Brill
    • 2
  • Y. Chen
    • 2
  • U. Lee
    • 2
  • M. F. Vilela
    • 3
  • J. Peterson
    • 3
  • S. M. Johnson
    • 3
  • D. D. Lofgreen
    • 3
  • D. Rhiger
    • 3
  • E. A. Patten
    • 3
  • P. M. Goetz
    • 3
  1. 1.U.S. Army RDECOM, CERDEC Night Vision and Electronic SensorsFort BelvoirUSA
  2. 2.U.S. Army Research LaboratoryAdelphiUSA
  3. 3.Raytheon Vision SystemsGoletaUSA

Personalised recommendations