Journal of Electronic Materials

, Volume 39, Issue 9, pp 1456–1462 | Cite as

Nanostructured Interfaces for Thermoelectrics

  • Y. Gao
  • A. M. Marconnet
  • M. A. Panzer
  • S. LeBlanc
  • S. Dogbe
  • Y. Ezzahri
  • A. Shakouri
  • K. E. Goodson


Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5-μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW−1 to 4.3 m2 K MW−1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m−3 K−1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.


Thermal interface materials thermoelectric modules thermoreflectance thermometry vertically aligned carbon nanotubes silicon germanium thermomechanical stress 



Heat capacity, J kg−1 K−1


Volumetric heat capacity, J m−3 K−1


Bond line thickness, μm


Effective fill fraction of CNT film, %


Shear modulus, GPa


Thermal conductivity, W m−1 K−1


Joint length, m


Thermal resistivity, m K W−1


Thermal resistance, m2 K W−1


Temperature excursion, K

Greek symbols


Thermal expansion coefficient, 10−6 K−1


Density of CNT, kg m−3


Maximum shear stress, GPa



Thermal expansion coefficient of layer 1


Thermal expansion coefficient of layer 2


Boundary between CNT film and Pt metal layer


Boundary between CNT film and substrate








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded in part by Bosch LLC, the Precourt Energy Efficiency Center, and the National Science Foundation. Special thanks go to Ali Shakouri’s group at UC Santa Cruz for the SiGe substrates and Molecular Nanosystems Inc. for their CNT fabrication support.


  1. 1.
    V. Ravi, S. Firdosy, T. Caillat, E. Brandon, K. Van Der Walde, L. Maricic, and A. Sayir, J. Electron. Mater. 38, 1433 (2009).CrossRefADSGoogle Scholar
  2. 2.
    M. Srinivasan and S.M. Praslad, Proceedings of the International Conference on Power Electronics and Drive Systems (Kualu Lumpur, Malaysia), vol. 2, pp. 977–982, Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ (2005).Google Scholar
  3. 3.
    X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Int. J. Heat Mass Tran. 45, 5159 (2002).MATHCrossRefGoogle Scholar
  4. 4.
    G. Min and D.M. Rowe, Solid State Electron. 43, 923 (1999).CrossRefADSGoogle Scholar
  5. 5.
    T.J. Hendricks and J.A. Lustbader, Proceedings of the 21st International Conference on Thermoelect. (2002).Google Scholar
  6. 6.
    I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nano 4, 235 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Pettes, M. Hodes, and K. Goodson, Proc. IPACK2007 2, 221 (2007).Google Scholar
  8. 8.
    S. LeBlanc, Y. Gao, and K. Goodson, Proceedings of IMECE 2008, October 31–November 6, Boston, Massachusetts (2008).Google Scholar
  9. 9.
    T. Clin, S. Turenne, D. Vasilevskiy, and R. Masut, J. Electron. Mater. 38, 994 (2009).CrossRefADSGoogle Scholar
  10. 10.
    Y. Hori, D. Kusano, T. Ito, and K. Izumi, Proceedings of the 18th International Conference on Thermoelect., p. 328 (1999).Google Scholar
  11. 11.
    R. Prasher, Proc. IEEE 94, 1571 (2006).CrossRefGoogle Scholar
  12. 12.
    M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, J. Heat Transf. 130, 052401 (2008).CrossRefGoogle Scholar
  13. 13.
    T. Tong, Z. Yang, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, IEEE Trans. Compon. Pack. Technol. 30, 92 (2007).CrossRefGoogle Scholar
  14. 14.
    O. Yaglioglu, R. Martens, A. Hart, and A. Slocum, Adv. Mater. 20, 357 (2008).CrossRefGoogle Scholar
  15. 15.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, and H. Dai, Proc. Natl Acad. Sci. USA 102, 16141 (2005).CrossRefADSPubMedGoogle Scholar
  16. 16.
    E.M. Petrie, Handbook of Adhesives and Sealants (New York: McGraw-Hill, 2000).Google Scholar
  17. 17.
    J. Vázquez, M.A. Sanz-Bobi, R. Palacios, and A. Arenas, Proceedings of the 7th European Workshop Thermoelect. (2002).Google Scholar
  18. 18.
    C.M. Bhandari and D.M. Rowe, Contemp. Phys. 21, 219 (1980).CrossRefADSGoogle Scholar
  19. 19.
    R.S. Ruoff and D.C. Lorents, Carbon 33, 925 (1995).CrossRefGoogle Scholar
  20. 20.
    Z.L. Wang, D.W. Tang, X.B. Li, X.H. Zheng, W.G. Zhang, L.X. Zheng, Y.T. Zhu, A.Z. Jin, H.F. Yang, and C.Z. Gu, Appl. Phys. Lett. 91, 123119 (2007).CrossRefADSGoogle Scholar
  21. 21.
    M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Phys. Rev. Lett. 95, 065502 (2005).CrossRefADSPubMedGoogle Scholar
  22. 22.
    P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).CrossRefADSPubMedGoogle Scholar
  23. 23.
    C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).CrossRefADSPubMedGoogle Scholar
  24. 24.
    E. Pop, D. Mann, Q. Wang, K.E. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).CrossRefADSPubMedGoogle Scholar
  25. 25.
    B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, and H. Hu, J. Appl. Phys. 101, 054313 (2007).CrossRefADSGoogle Scholar
  26. 26.
    X.J. Hu, A.A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, J. Heat Transf. 128, 1109 (2006).CrossRefGoogle Scholar
  27. 27.
    S. Shaikh, K. Lafdi, and E. Silverman, Carbon 45, 695 (2007).CrossRefGoogle Scholar
  28. 28.
    Y.M. Choi, S. Lee, H.S. Yoon, M.S. Lee, H. Kim, I. Han, Y. Son, I.S. Yeo, U.I. Chung, and J.T. Moon, 6th IEEE Conference on Nanotechnology (2006).Google Scholar
  29. 29.
    D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, and G. Chen, Phys. Lett. A 329, 207 (2004).MATHCrossRefADSGoogle Scholar
  30. 30.
    D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, and J.Q. Li, Phys. Rev. B 66, 165440 (2002).CrossRefADSGoogle Scholar
  31. 31.
    X. Wang, Z. Zhong, and J. Xu, J. Appl. Phys. 97, 064302 (2005).CrossRefADSGoogle Scholar
  32. 32.
    S.K. Pal, Y. Son, T. Borca-Tasciuc, D.A. Borca-Tasciuc, S. Kar, R. Vajtai, and P.M. Ajayan, J. Mater. Res. 23, 2099 (2008).CrossRefADSGoogle Scholar
  33. 33.
    T. Borca-Tasciuc, S. Vafaei, D.A. Borca-Tasciuc, B.Q. Wei, R. Vajtai, and P.M. Ajayan, J. Appl. Phys. 98, 054309 (2005).CrossRefADSGoogle Scholar
  34. 34.
    I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D.B. Geohegan, Appl. Phys. Lett. 89, 223110 (2006).CrossRefADSGoogle Scholar
  35. 35.
    H. Xie, A. Cai, and X. Wang, Phys. Lett. A 369, 120 (2007).CrossRefADSGoogle Scholar
  36. 36.
    T. Tong, A. Majumdar, Z. Yang, A. Kashani, L. Delzeit, and M. Meyyappan, ITHERM ’06 (2006).Google Scholar
  37. 37.
    Y. Son, S.K. Pal, T. Borca-Tasciuc, P.M. Ajayan, and R.W. Siegel, J. Appl. Phys. 103, 024911 (2008).CrossRefADSGoogle Scholar
  38. 38.
    J. Xu and T.S. Fisher, Int. J. Heat Mass Trans. 49, 1658 (2006).CrossRefGoogle Scholar
  39. 39.
    A.M. Marconnet, personal communication, Dept. of Mechanical Engineering, Stanford University (2009).Google Scholar
  40. 40.
    H.L. Zhang, J.F. Li, K.F. Yao, and L.D. Chen, J. Appl. Phys. 97, 114310 (2005).CrossRefADSGoogle Scholar
  41. 41.
    H.L. Zhang, J.F. Li, B.P. Zhang, K.F. Yao, W.S. Liu, and H. Wang, Phys. Rev. B 75, 205407 (2007).CrossRefADSGoogle Scholar
  42. 42.
    A. Shakouri, Proc. IEEE 94, 1613 (2006).CrossRefGoogle Scholar
  43. 43.
    B.M. Clemens, G.L. Eesley, and C.A. Paddock, Phys. Rev. B 37, 1085 (1988).CrossRefADSGoogle Scholar
  44. 44.
    D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Y. Gao
    • 1
  • A. M. Marconnet
    • 1
  • M. A. Panzer
    • 1
  • S. LeBlanc
    • 1
  • S. Dogbe
    • 2
  • Y. Ezzahri
    • 3
  • A. Shakouri
    • 3
  • K. E. Goodson
    • 1
  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA
  2. 2.Stanford Nanofabrication FacilityStanfordUSA
  3. 3.Baskin School of EngineeringUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations