Journal of Electronic Materials

, Volume 39, Issue 9, pp 1634–1639 | Cite as

Ba-Cu-Si Clathrates: Phase Equilibria and Crystal Chemistry

  • X. Yan
  • G. Giester
  • E. Bauer
  • P. Rogl
  • S. PaschenEmail author

The formation and crystal chemistry of ternary clathrates in the Ba-Cu-Si system were investigated on a series of compounds Ba8Cu x Si46−x (3 ≤ x ≤ 8). The phase diagram around the clathrate phase was constructed at 800°C, revealing a homogeneity range from Ba8Cu3.4Si42.6 to Ba8Cu4.8Si41.2. Structural investigations confirmed that the clathrates in this system crystallize with cubic primitive symmetry, in the type I clathrate structure (space group Pm \( \bar{3} \) n). Single-crystal x-ray diffraction indicates that the Cu atoms partially substitute for Si atoms on the 6d site; no vacancies are observed.


Clathrate phase equilibria crystal chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank M. Waas for assistance in the SEM/EDX investigation, and A. Prokofiev, A. Grytsiv, and S. Laumann for assistance with several experiments and fruitful discussions. This work was supported by FFG Project THECLA (815648).


  1. 1.
    F.J. Disalvo, Science 285, 703 (1999). doi: 10.1126/science.285.5428.703.CrossRefPubMedGoogle Scholar
  2. 2.
    E.B. Lon, Science 321, 1457 (2008). doi: 10.1126/science:1158899.CrossRefGoogle Scholar
  3. 3.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008). doi: 10.1126/science:1159725.CrossRefADSPubMedGoogle Scholar
  4. 4.
    A. Majumdar, Science 303, 777 (2004). doi: 10.1126/science:1093164.CrossRefPubMedGoogle Scholar
  5. 5.
    G.A. Slack, New Materials and Performance Limits for Thermoelectric Cooling.CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 107.Google Scholar
  6. 6.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanazidis, Science 303, 818 (2004). doi: 10.1126/science:1092963.CrossRefADSPubMedGoogle Scholar
  7. 7.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001). doi: 10.1038/35098012.CrossRefADSPubMedGoogle Scholar
  8. 8.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002). doi: 10.1126/science:1072886.CrossRefADSPubMedGoogle Scholar
  9. 9.
    G.J. Fnyder and E.S. Toberer, Nature 7, 105 (2008). doi: 10.1038/nmat2090.Google Scholar
  10. 10.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000). doi: 10.1063/1.373469.CrossRefADSGoogle Scholar
  11. 11.
    B.C. Chakoumakos, B.C. Sales, D.G. Mandrus, and G.S. Nolas, J. Alloys. Compd. 296, 80 (2000). doi: 10.1016/S0925-8388(99)00531-9.CrossRefGoogle Scholar
  12. 12.
    J.F. Meng, N.V. Charda Shekar, J.V. Badding, and G.S. Nolas, J. Appl. Phys. 89, 1730 (2001). doi: 10.1063/1.334366.CrossRefADSGoogle Scholar
  13. 13.
    G. Cordier and P. Woll, J. Less Common Met. 169, 291 (1991). doi: 10.1016/0022-5088(91)90076-G.CrossRefGoogle Scholar
  14. 14.
    Ya. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, and H. Noel, J. Phys. Condens. Matter 14, 7991 (2002). doi: 10.1088/0953-8984/14/34/318.CrossRefADSGoogle Scholar
  15. 15.
    H.-U. Schuster and W. Westerhaus, Z. Naturf. b 30, 805 (1975).Google Scholar
  16. 16.
    W. Westerhaus and H.-U. Schuster, Z. Naturf. b 32, 1365 (1977).Google Scholar
  17. 17.
    H. Schäfer, Annu. Rev. Mater. Sci. 15, 1 (1985). doi: 10.1088/0953-8984/14/34/318.CrossRefADSGoogle Scholar
  18. 18.
    Y. Li, Y. Liu, N. Chen, G. Cao, Z. Feng, and J.H. Ross Jr., Phys. Lett. A 345, 398 (2005). doi: 10.1016/j.physleta.2005.07.015.zbMATHCrossRefADSGoogle Scholar
  19. 19.
    M. Christensen and B.B. Iversen, Chem. Mater. 19, 4896 (2007). doi: 10.1021/cm071435p.CrossRefGoogle Scholar
  20. 20.
    L. Yang, Y. Wang, T. Liu, T.D. Hu, B.X. Li, K. Stahl, S.Y. Chen, M.Y. Li, P. Shen, G.L. Lu, Y.W. Wang, and J.Z. Jiang, J. Solid State Chem. 178, 1773 (2005). doi: 10.1016/j.jssc.2005.03.015.CrossRefADSGoogle Scholar
  21. 21.
    K. Akai, K. Koga, K. Oshiro, and M. Matsuum, Trans. Mater. Res. Soc. Jpn. 29, 3647 (2004).Google Scholar
  22. 22.
    K. Akai, G. Zhao, K. Koga, K. Oshiro, and M. Matsuura, Proceedings of 24th International Conference on Thermoelectrics, Beijing, China (Piscataway, NJ, USA: IEEE, 2005), pp. 230–233.Google Scholar
  23. 23.
    K. Akai, K. Koga, and M. Matsuura, Mater. Trans. 48, 684 (2007). doi: 10.2320/matertrans.48.684.CrossRefGoogle Scholar
  24. 24.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, and D. Mandrus, Phys. Rev. B 64, 245113 (2001). doi: 10.1103/PhysRevB.64.214404.CrossRefADSGoogle Scholar
  25. 25.
    V. Pacheco, W. Carrillo-Cabrera, V.H. Tran, S. Paschen, and Y. Grin, Phys. Rev. Lett. 87, 099601 (2001). doi: 10.1103/PhysRevLett.87.099601.CrossRefADSPubMedGoogle Scholar
  26. 26.
    Nonius Kappa CCD Program Package, COLLECT, DEZO, SCALEPACK, SORTAV (Delft, The Netherlands: Nonius, 1998).Google Scholar
  27. 27.
    G.M. Sheldrick, Program for Crystal Structure Refinement (Germany: University of Göttingen; 1997), Windows version by McArdle, Natl. Univ. Ireland, Galway.Google Scholar
  28. 28.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, E. Bauer, R. Lackner, E. Roanian, and G. Giester, J. Phys. Soc. Jpn. 77, 54 (2008).Google Scholar
  29. 29.
    N. Melnychenko-Koblyuk, A. Grytsiv, S. Berger, H. Kaldara, H. Michor, F. Röhrbacher, E. Royanian, E. Bauer, P. Rogl, H. Schmid, and G. Giester, J. Phys. Condens. Matter 19, 046203 (2007). doi: 10.1088/0953-8984/19/4/046203.CrossRefADSGoogle Scholar
  30. 30.
    N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldara, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, and G. Giester, J. Phys. Condens. Matter 19, 216223 (2007). doi: 10.1088/0953-8984/19/21/216223.CrossRefADSGoogle Scholar
  31. 31.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B 76, 144118 (2007). doi: 10.1103/PhysRevB.76.144118.CrossRefADSGoogle Scholar
  32. 32.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B Condens. Matter Mater. Phys. 76, 195124/1 (2007). doi: 10.1103/PhysRevB.76.195124.ADSGoogle Scholar
  33. 33.
    C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Picooli, A.J. Schultz, and S.M. Kauzlarich, Inorg. Chem. 45, 9381 (2006). doi: 10.1021/ic061241w.CrossRefPubMedGoogle Scholar
  34. 34.
    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, TZPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, ed. Springer (1994).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • X. Yan
    • 1
    • 2
  • G. Giester
    • 3
  • E. Bauer
    • 1
  • P. Rogl
    • 2
  • S. Paschen
    • 1
    Email author
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Institute of Physical ChemistryUniversity of ViennaViennaAustria
  3. 3.Institute of Mineralogy and CrystallographyUniversity of ViennaViennaAustria

Personalised recommendations