Journal of Electronic Materials

, Volume 39, Issue 7, pp 863–867

Metalorganic Chemical Vapor Deposition of CdTe(133) Epilayers on Si(211) Substrates

  • Kwang-Chon Kim
  • Hyun Jae Kim
  • Sang-Hee Suh
  • M. Carmody
  • S. Sivananthan
  • Jin-Sang Kim

Single-crystalline CdTe(133) films have been grown by metalorganic chemical vapor deposition on Si(211) substrates. We studied the effect of various growth parameters on the surface morphology and structural quality of CdTe films. Proper oxide removal from the Si substrate is considered to be the principal factor that influences both the morphology and epitaxial quality of the CdTe films. In order to obtain single-crystalline CdTe(133) films, a two-stage growth method was used, i.e., a low-temperature buffer layer step and a high- temperature growth step. Even when the low-temperature buffer layer shows polycrystalline structure, the overgrown layer shows single-crystalline structure. During the subsequent high-temperature growth, two-dimensional crystallites grow faster than other, randomly distributed crystallites in the buffer layer. This is because the capturing of adatoms by steps occurs more easily due to increased adatom mobility. From the viewpoint of crystallographic orientation, it is assumed that the surface structure of Si(211) consists of (111) terrace and (100) step planes with an interplanar angle of 54.8°. This surface structure may provide many preferable nucleation sites for adatoms compared with nominally flat Si(100) or (111) surfaces. The surface morphology of the resulting films shows macroscopic rectangular-shaped terrace—step structures that are considered to be a (111) terrace with two {112} step planes directed toward 〈110〉.


Thin film MOCVD CdTe/Si buffer layer thermal cleaning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.C. Antony, A.L. Faheubruch, M.G. Peters, and R.H. Bube, J. Appl. Phys. 57, 400 (1985).CrossRefADSGoogle Scholar
  2. 2.
    V.P. Singh, O.M. Erickson, and J.H. Chao, J. Appl. Phys. 78, 4538 (1995).CrossRefADSGoogle Scholar
  3. 3.
    M.C. Chen and M.J. Bevan, J. Appl. Phys. 78, 4787 (1995).CrossRefADSGoogle Scholar
  4. 4.
    M. Niraula, K. Yasuda, K. Takagi, H. Kusama, M. Tominaga, Y. Yamamoto, Y. Agata, and K. Suzuki, J. Electron. Mater. 34, 815 (2005).CrossRefADSGoogle Scholar
  5. 5.
    K. Yasuda, M. Niraula, H. Kusama, Y. Yamamoto, M. Tominaga, K. Takagi, Y. Agata, and K. Suzuki, IEEE Trans. Nucl. Sci. 52, 1951 (2005).CrossRefADSGoogle Scholar
  6. 6.
    H. Tatsuoka, H. Kuwabara, Y. Nakanishi, and H. Fujiyasu, J. Cryst. Growth 129, 686 (1993).CrossRefADSGoogle Scholar
  7. 7.
    S. Seto, S. Yamada, and K. Suzuki, J. Cryst. Growth 214–215, 5 (2000).CrossRefGoogle Scholar
  8. 8.
    H. Ebe and Y. Nishijima, Appl. Phys. Lett. 67, 3138 (1995).CrossRefADSGoogle Scholar
  9. 9.
    K. Yasuda, H. Hatano, M. Minamide, T. Maejima, and K. Kawamoto, J. Cryst. Growth 166, 612 (1996).CrossRefADSGoogle Scholar
  10. 10.
    W.-S. Wang and I. Bhat, J. Electron. Mater. 24, 451 (1955).CrossRefADSGoogle Scholar
  11. 11.
    L.A. Almeida, Y.P. Chen, J.P. Faurie, S. Sivananthan, D.J. Smith, and S.-C.Y. Tsen, J. Electron. Mater. 25, 1402 (1996).CrossRefADSGoogle Scholar
  12. 12.
    S. Rujirawat, L.A. Almeida, Y.P. Chen, S. Sivananthan, and D.J. Smith, Appl. Phys. Lett. 71, 1810 (1997).CrossRefADSGoogle Scholar
  13. 13.
    K. Shigenaka, K. Matsushita, L. Sugiura, F. Nakata, and K. Hirahara, J. Electron. Mater. 25, 1347 (1996).CrossRefADSGoogle Scholar
  14. 14.
    S.-H. Suh, J.-S. Kim, H.J. Kim, and J.-H. Song, J. Cryst. Growth 236, 119 (2002).CrossRefADSGoogle Scholar
  15. 15.
    R. People and J.C. Bean, Appl. Phys. Lett. 47, 322 (1985).CrossRefADSGoogle Scholar
  16. 16.
    S. Rujirawat, D.J. Smith, J.P. Faurie, G. Neu, V. Nathan, and S. Sivananthan, J. Electron. Mater. 27, 1047 (1998).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Kwang-Chon Kim
    • 1
    • 2
  • Hyun Jae Kim
    • 2
  • Sang-Hee Suh
    • 4
  • M. Carmody
    • 3
  • S. Sivananthan
    • 3
  • Jin-Sang Kim
    • 1
  1. 1.Thin-Film Materials Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.School of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea
  3. 3.EPIR TechnologiesBolingbrookUSA
  4. 4.Center for Nanostructured Materials TechnologyKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations