Journal of Electronic Materials

, Volume 39, Issue 7, pp 873–881 | Cite as

MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements

  • S. Velicu
  • C.H. Grein
  • P.Y. Emelie
  • A. Itsuno
  • J.D. Philips
  • P. Wijewarnasuriya

In this work, we analyze Auger suppression in HgCdTe alloy-based device structures and determine the operation temperature improvements expected when Auger suppression occurs. We identified critical material (absorber dopant concentration and minority-carrier lifetime) requirements that must be satisfied for optimal performance characteristics. Calculated detectivity values of Auger-suppressed and standard double-layer planar heterostructure (DLPH) devices demonstrate consistently higher maximum background-limited temperatures over a range of cutoff wavelengths and generally higher detectivity values achieved by Auger-suppressed detectors. Furthermore, these devices can operate with comparable performance at up to 100 K higher than DLPH detectors operating at reference temperatures above 100 K. Results of these simulations demonstrate that Auger-suppressed detectors provide a significant advantage over DLPH devices for high-temperature operation and are a viable candidate for thermoelectrically cooled detectors. Experimental dark current–voltage (IV) characteristics between 120 K and 300 K were fitted using numerical simulations. By fitting the temperature-dependent IV experimental data, we determined that the observed negative differential resistance (NDR) is due to Auger suppression. More specifically, NDR is attributed to full suppression of Auger-1 processes and partial (~70%) suppression of Auger-7 processes. After Auger suppression, the remaining leakage current is principally limited by the Shockley–Read–Hall recombination component. Part of the leakage current is also due to a residual Auger-7 current in the absorber due to the extrinsic p-type doping level. Analysis and comparison of our theoretical and experimental device results in structures where Auger suppression was realized are also presented.


HgCdTe infrared detectors high operating temperature Auger suppression lifetime molecular-beam epitaxy negative differential resistance minority-carrier lifetime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful for support from the U.S. Army under SBIR Contract W911QX-08-C-0106.


  1. 1.
    C.T. Elliott and T. Ashley, Electron. Lett. 21, 451 (1985).CrossRefADSGoogle Scholar
  2. 2.
    H.F. Schaake, M.A. Kinch, D. Chandra, F. Aqariden, P.K. Liao, D.F. Weirauch, C.F. Wan, R.E. Scritchfield, W.W. Sullivan, J.T. Teherani, and H.D. Shih, J. Electron. Mater. 37, 1401 (2008).CrossRefADSGoogle Scholar
  3. 3.
    T.J. De Lyon, J.E. Jensen, I. Kasai, G.M. Venzor, K. Kosai, J.B. De Bruin, and W.L. Ahlgren, J. Electron. Mater. 31, 220 (2002).CrossRefADSGoogle Scholar
  4. 4.
    P.Y. Emelie, J.D. Phillips, S. Velicu, and C.H. Grein, J. Electron. Mater. 36, 846 (2007).CrossRefADSGoogle Scholar
  5. 5.
    M. Kinch, J. Electron. Mater. 29, 809 (2000).CrossRefADSGoogle Scholar
  6. 6.
    G.M. Williams and R.E. De Wames, J. Electron. Mater. 24, 1239 (1995).CrossRefADSGoogle Scholar
  7. 7.
    J. Piotrowski, A. Jozwikowska, K. Jozwikowski, and R. Ciupa, Infrared Phys. 34, 565 (1993).CrossRefADSGoogle Scholar
  8. 8.
    E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).CrossRefADSGoogle Scholar
  9. 9.
    C.T. Elliott, N.T. Gordon, R.S. Hall, and T.J. Phillips, J. Electron. Mater. 26, 643 (1997).CrossRefADSGoogle Scholar
  10. 10.
    M. Kinch, C. Wan, and J.D. Beck, J. Electron. Mater. 34, 928 (2005).CrossRefADSGoogle Scholar
  11. 11.
    Sentaurus Device (Mountain View, CA: Synopsys, 2005).Google Scholar
  12. 12.
    Sentaurus Structure Editor (Mountain View, CA: Synopsys, 2005).Google Scholar
  13. 13.
    R.E. Bank and D.J. Rose, Numer. Math. 37, 279 (1981).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R.E. Bank, D.J. Rose, and W. Fichtner, IEEE Trans. Electron. Dev. 30, 1031 (1983).CrossRefADSGoogle Scholar
  15. 15.
    J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron. Dev. 48, 1326 (2001).CrossRefADSGoogle Scholar
  16. 16.
    T.N. Casselman and P.E. Petersen, Solid State Commun. 33, 615 (1980).CrossRefADSGoogle Scholar
  17. 17.
    G.L. Hansen, J.L. Schmidt, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).CrossRefADSGoogle Scholar
  18. 18.
    W. Scott, J. Appl. Phys. 43, 1055 (1972).CrossRefADSGoogle Scholar
  19. 19.
    V. Ariel and G. Bahir, J. Electron. Mater. 26, 673 (1997).CrossRefADSGoogle Scholar
  20. 20.
    N.H. Joo, S.D. Yoo, B.G. Ko, S.W. Lee, J. Jang, S.D. Lee, and K.D. Kwack, Proc. SPIE 3436, 50 (1998).CrossRefADSGoogle Scholar
  21. 21.
    D.H. Mao, H.G. Robinson, D.U. Bartholomew, and C.R. Helms, J. Electron. Mater. 26, 678 (1997).CrossRefADSGoogle Scholar
  22. 22.
    Z.J. Quan, G.B. Chen, L.Z. Sun, Z.H. Ye, Z.F. Li, and W. Lu, Infrared Phys. Technol. 50, 1 (2007).CrossRefADSGoogle Scholar
  23. 23.
    R.L. Anderson, Solid State Electron. 26, 65 (1983).CrossRefGoogle Scholar
  24. 24.
    P.S. Wijewarnasuriya, P.Y. Emelie, A. D’Souza, G. Brill, M.G. Stapelbroek, S. Velicu, Y. Chen, C.H. Grein, S. Sivananthan, and N.K. Dhar, J. Electron. Mater. 37, 1283 (2008).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • S. Velicu
    • 1
  • C.H. Grein
    • 1
  • P.Y. Emelie
    • 2
  • A. Itsuno
    • 2
  • J.D. Philips
    • 2
  • P. Wijewarnasuriya
    • 3
  1. 1.EPIR TechnologiesBolingbrookUSA
  2. 2.University of MichiganAnn ArborUSA
  3. 3.US Army Research LaboratoryAdelphiUSA

Personalised recommendations