Journal of Electronic Materials

, Volume 39, Issue 7, pp 924–929

Microstructural Characterization of CdTe Surface Passivation Layers

  • W.F. Zhao
  • J. Cook
  • T. Parodos
  • S. Tobin
  • David J. Smith
Article

Abstract

The microstructure of CdTe (CT) surface passivation layers deposited on HgCdTe (MCT) heterostructures has been evaluated using transmission electron microscopy (TEM). The MCT heterostructures were grown by liquid-phase epitaxy and consisted of thick (approximately 10 μm to 20 μm) n-type MCT layers and thin (approximately 1 μm to 3 μm) p-type MCT layers. The final CT (approximately 0.3 μm to 0.6 μm) capping layers were grown either by hot-wall epitaxy (HWE) or molecular-beam epitaxy (MBE). One of the wafers with the CT layer grown by MBE was also annealed in Hg atmosphere at 250°C for 96 h. The as-deposited CT passivation layers were polycrystalline and columnar. The CT grains were larger and more irregular when deposited by HWE, whereas those deposited by MBE were generally well textured with mostly vertical grain boundaries. Observations and measurements with several TEM abrupt structurally after annealing techniques showed that the CT/MCT interface became considerably more abrupt structurally after annealing, and the crystallinity of the CT layer was also improved.

Keywords

CdTe passivation HgCdTe transmission electron microscopy (TEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Kumar, R. Pal, P.K. Chaudhury, B.L. Sharma, and V. Gopal, J. Electron. Mater. 34, 1225 (2005).CrossRefADSGoogle Scholar
  2. 2.
    V. Ariel, V. Garber, D. Rosenfeld, and G. Bahir, J. Electron. Mater. 24, 1169 (1995).CrossRefADSGoogle Scholar
  3. 3.
    L.O. Bubulac, W.E. Tennant, J. Bajaj, J. Sheng, R. Brigham, A.H.B. Vanderwyck, M. Zandian, and W.V. Mc Levige, J. Electron. Mater. 24, 1175 (1995).CrossRefADSGoogle Scholar
  4. 4.
    O.P. Agnihotri, C.A. Musca, and L. Faraone, Semicond. Sci. Technol. 13, 839 (1998).CrossRefADSGoogle Scholar
  5. 5.
    S.Y. An, J.S. Kim, D.W. Seo, and S.H. Suh, J. Electron. Mater. 31, 683 (2002).CrossRefADSGoogle Scholar
  6. 6.
    Y.S. Ryu, T.W. Kang, and T.W. Kim, Mater. Sci. Eng. B 122, 80 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Aoki, Y. Chang, G. Badano, J. Zhao, C. Grein, S. Sivananthan, and D.J. Smith, J. Cryst. Growth 265, 224 (2004).CrossRefADSGoogle Scholar
  8. 8.
    C. Wang, S. Tobin, T. Parodos, and D.J. Smith, J. Electron. Mater. 35, 1192 (2006).CrossRefADSGoogle Scholar
  9. 9.
    S.J. Pennycook and D.E. Jesson, Ultramicroscopy 37, 14 (1991).CrossRefGoogle Scholar
  10. 10.
    H. Lakner, B. Bolling, S. Underechts, and E. Kubalek, J. Phys. D: Appl. Phys. 29, 1767 (1996).CrossRefADSGoogle Scholar
  11. 11.
    T. Aoki, M. Takeguchi, P. Boieriu, R. Singh, C. Grein, Y. Chang, S. Sivananthan, and D.J. Smith, J. Cryst. Growth 271, 29 (2004).CrossRefADSGoogle Scholar
  12. 12.
    M.A. Mattson, T.H. Myers, M. Richards-Babb, and J.R. Meyer, J. Electron. Mater. 26, 578 (1997).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • W.F. Zhao
    • 1
  • J. Cook
    • 2
  • T. Parodos
    • 2
  • S. Tobin
    • 2
  • David J. Smith
    • 3
  1. 1.School of MaterialsArizona State UniversityTempeUSA
  2. 2.BAE SystemsLexingtonUSA
  3. 3.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations