Advertisement

Journal of Electronic Materials

, Volume 39, Issue 7, pp 936–944 | Cite as

Electronic and Optical Properties of Mg x Zn1−x O and Be x Zn1−x O Quantum Wells

  • Enrico Furno
  • Simone Chiaria
  • Michele Penna
  • Enrico Bellotti
  • Michele Goano
Article

Abstract

As a preparatory step toward establishing reliable numerical design tools for ZnO-based optoelectronic devices, we have reassessed the available information on material parameters relevant for the simulation of light-emitting diodes (LEDs) with active regions including ZnO, MgZnO, and BeZnO layers. The impact of different approximations for the electronic structure and the interface polarization charge on the optical properties of bulk ZnO and ZnO/MgZnO quantum wells has been evaluated, and a consistent set of parameters has been used not only for systematic comparison of ZnO/MgZnO and ZnO/BeZnO single quantum well structures but also for the first simulation of a realistic ZnO/BeZnO multiple quantum well LED.

Keywords

ZnO MgZnO BeZnO UV LEDs quantum wells optical gain spontaneous emission spontaneous and piezoelectric polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank Dr. Francesco Bertazzi (Politecnico di Torino) and Dr. Pierluigi Debernardi (CNR–IEIIT) for many useful discussions. The numerical simulations were performed with an APSYS evaluation license at Politecnico di Torino and a 1-year license at Boston University.

References

  1. 1.
    Ü. ÖzgÜr, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).CrossRefADSGoogle Scholar
  2. 2.
    C. Jagadish and S.J. Pearton, eds., Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Oxford: Elsevier, 2006).Google Scholar
  3. 3.
    H. Morkoç and Ü. ÖzgÜr, Zinc Oxide. Fundamentals, Materials and Device Technology (Weinheim: Wiley-VCH Verlag, 2009).Google Scholar
  4. 4.
    T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78, 1237 (2001).CrossRefADSGoogle Scholar
  5. 5.
    S. Kalusniak, S. Sadofev, J. Puls, and F. Hannenberger, Laser Photon. Rev. 3, 233 (2009).CrossRefGoogle Scholar
  6. 6.
    Y.-S. Choi, J.-W. Kang, D.-K. Hwang, and S.-J. Park, IEEE Trans. Electron. Dev. 57, 26 (2010).CrossRefADSGoogle Scholar
  7. 7.
    Y.I. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, and B.M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).CrossRefADSGoogle Scholar
  8. 8.
    S.Y. Han, H. Yang, D.P. Norton, S.J. Pearton, F. Ren, A. Osinsky, J.W. Dong, B. Hertog, and P.P. Chow, J. Vac. Sci. Technol. B 23, 2504 (2005).CrossRefGoogle Scholar
  9. 9.
    T.P. Yang, H.C. Zhu, J.M. Bian, J.C. Sun, X. Dong, B.L. Zhang, H.W. Liang, X.P. Li, Y.G. Cui, and G.T. Du, MRS Bull. 43, 3614 (2008).CrossRefGoogle Scholar
  10. 10.
    W.S. Han, Y.Y. Kim, B.H. Kong, and H.K. Cho, Thin Solid Films 517, 5106 (2009).CrossRefGoogle Scholar
  11. 11.
    H.S. Yang, S.Y. Han, Y.W. Heo, K.H. Baik, D.P. Norton, S.J. Pearton, F. Ren, A. Osinsky, J.W. Dong, B. Hertog, A.M. Dabiran, P.P. Chow, L. Chernyak, T. Steiner, C.J. Kao, and G.C. Chi, Jpn. J. Appl. Phys. 44, 7296 (2005).CrossRefADSGoogle Scholar
  12. 12.
    A. Osinsky, J.W. Dong, M.Z. Kauser, B. Hertog, A.M. Debiran, P.P. Chow, S.J. Pearton, O. Lopatiuk, and L. Chernyak, Appl. Phys. Lett. 85, 4272 (2004).CrossRefADSGoogle Scholar
  13. 13.
    H. Zhu, C.X. Shan, B.H. Li, J.Y. Zhang, B. Yao, Z.Z. Zhang, D.X. Zhao, D.Z. Shen, and X.W. Fan, J. Phys. Chem. C 113, 2980 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 44, L643 (2005).CrossRefADSGoogle Scholar
  15. 15.
    Y.R. Ryu, W.J. Kim, and H.W. White, J. Cryst. Growth 219, 419 (2000).CrossRefADSGoogle Scholar
  16. 16.
    Y.R. Ryu, T.S. Lee, J.H. Leem, and H.W. White, Appl. Phys. Lett. 83, 4032 (2003).CrossRefADSGoogle Scholar
  17. 17.
    S.J. Jiao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B. Yao, J.Y. Zhang, B.H. Li, D.X. Zhao, X.W. Fan, and Z.K. Tang, Appl. Phys. Lett. 88, 031911 (2006).CrossRefADSGoogle Scholar
  18. 18.
    W.Z. Xu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, and S.B. Zhang, Appl. Phys. Lett. 88, 173506 (2006).CrossRefADSGoogle Scholar
  19. 19.
    W. Liu, J. Bian, L. Hu, H. Liang, H. Zang, J. Sun, Z. Zhao, A. Liu, and G. Du, Solid State Commun. 142, 655 (2007).CrossRefADSGoogle Scholar
  20. 20.
    J.C. Sun, J.Z. Zhao, H.W. Liang, J.M. Bian, L.Z. Hu, H.Q. Zhang, X.P. Liang, W.F. Liu, and G.T. Du. Appl. Phys. Lett. 90, 121128 (2007).CrossRefADSGoogle Scholar
  21. 21.
    Z.P. Wei, Y.M. Lu, D.Z. Shen, Z.Z. Zhang, B. Yao, B.H. Li, J.Y. Zhang, D.X. Zhao, X.W. Fan, and Z.K. Tang, Appl. Phys. Lett. 90, 042113 (2007).CrossRefADSGoogle Scholar
  22. 22.
    Z.Z. Ye, J.G. Lu, Y.Z. Zhang, Y.J. Zeng, L.L. Chen, F. Zhuge, G.D. Yuan, H.P. He, L.P. Zhu, J.Y. Huang, and B.H. Zhao, Appl. Phys. Lett. 91, 113503 (2007).CrossRefADSGoogle Scholar
  23. 23.
    Z.Z. Zhang, Z.P. Wei, Y.M. Lu, D.Z. Shen, B. Yao, B.H. Li, D.X. Zhao, J.Y. Zhang, X.W. Fan, and Z.K. Tang, J. Cryst. Growth 301–302, 362–365 (2007)Google Scholar
  24. 24.
    S. Chu, J.H. Lim, L.J. Mandalapu, L.L.Z. Yang, and J.L. Liu, Appl. Phys. Lett. 92, 152103 (2008).CrossRefADSGoogle Scholar
  25. 25.
    J. Kong, S. Chu, M. Olmedo, Z.Y.L. Li, and J. Liu, Appl. Phys. Lett. 93, 132113 (2008).CrossRefADSGoogle Scholar
  26. 26.
    J.Z. Zhao, H.W. Liang, J.C. Sun, J.M. Bian, Q.J. Feng, L.Z. Hu, H.Q. Zhang, X.P. Liang, Y.M. Luo, and G.T. Du, J. Phys. D 41, 195110 (2008).CrossRefADSGoogle Scholar
  27. 27.
    J.C. Sun, H.W. Liang, J.Z. Zhao, J.M. Bian, Q.J. Feng, L.Z. Hu, H.Q. Zhang, X.P. Liang, Y.M. Luo, and G.T. Du, Chem. Phys. Lett. 460, 548 (2008).CrossRefADSGoogle Scholar
  28. 28.
    X. Dong, B.L. Zhang, X.P. Li, W. Zhao, X.C. Xia, H.C. Zhu, and G.T. Du, J. Phys. D 40, 7298 (2007).CrossRefADSGoogle Scholar
  29. 29.
    J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, and S.-J. Park, Adv. Mater. 18, 2720 (2006).CrossRefGoogle Scholar
  30. 30.
    H.S. Kim, F. Lugo, S.J. Pearton, D.P. Norton, Y.-L. Wang, and F. Ren, Appl. Phys. Lett. 92, 112108 (2008).CrossRefADSGoogle Scholar
  31. 31.
    A.Y. Polyakov, N.B. Smirnov, A.V. Goverokov, E.A. Kozhukhova, A.I. Belogorokhov, D.P. Norton, H.S. Kim, and S.J. Pearton, J. Electron. Mater. 18, 2720 (2009).Google Scholar
  32. 32.
    G. Shukla, J. Phys. D. 42, 075105 (2009).CrossRefADSGoogle Scholar
  33. 33.
    Y.R. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, Appl. Phys. Lett. 88, 241108 (2006).CrossRefADSGoogle Scholar
  34. 34.
    Y.R. Ryu, J.A. Lubguban, T.S. Lee, H.W. White, T.S. Jeong, C.J. Youn, and W.J. Kim, Appl. Phys. Lett. 90, 131115 (2007).CrossRefADSGoogle Scholar
  35. 35.
    S.F. Ding, G.H. Fan, S.T. Li, K. Chen, and B. Xiao, Physica B 394, 127 (2007).ADSGoogle Scholar
  36. 36.
    M.S. Han, J.H. Kim, T.S. Jeong, J.M. Park, C.J. Youn, J.H. Leem, and Y.R. Ryu, J. Cryst. Growth 303, 506 (2007).CrossRefADSGoogle Scholar
  37. 37.
    Y. Duan, H. Shi, and L. Qin, Phys. Lett. A 372, 2930 (2008).CrossRefADSGoogle Scholar
  38. 38.
    A. Marnetto, M. Penna, F. Bertazzi, E. Bellotti, and M. Goano, Opt. Quantum Electron. 40, 1135 (2009).CrossRefGoogle Scholar
  39. 39.
    J. Piprek, ed., Nitride Semiconductor Devices: Principles and Simulation (Weinheim: Wiley-VCH Verlag, 2007).Google Scholar
  40. 40.
    S. Chiaria, E. Furno, M. Goano, and E. Bellotti, IEEE Trans. Electron. Dev. 57, 60 (2010).CrossRefADSGoogle Scholar
  41. 41.
    D. Ahn, S.H. Park, E.H. Park, and T.K. Yoo, IEEE Photon. Technol. Lett. 18, 349 (2006).CrossRefADSGoogle Scholar
  42. 42.
    S.H. Park and D. Ahn, Opt. Quantum Electron. 38, 935 (2006).CrossRefGoogle Scholar
  43. 43.
    K.A. Bulashevich, I.Y. Evstratov, V.N. Nabokov, and S.Y. Karpov, Appl. Phys. Lett. 87, 243502 (2005).CrossRefADSGoogle Scholar
  44. 44.
    K.A. Bulashevich, I.Y. Evstratov, and S.Y. Karpov, Phys. Status Solidi A 204, 241 (2007).Google Scholar
  45. 45.
    M. Goano, F. Bertazzi, M. Penna, and E. Bellotti, J. Appl. Phys. 102, 083709 (2007).CrossRefADSGoogle Scholar
  46. 46.
    W. Lambrecht, A.V. Rodina, S. Limpijumnong, B. Segall, and B.K. Meyer, Phys. Rev. B 65, 075207 (2002).CrossRefADSGoogle Scholar
  47. 47.
    T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).CrossRefADSGoogle Scholar
  48. 48.
    D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B 54, 5495 (1996).CrossRefADSGoogle Scholar
  49. 49.
    M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).CrossRefADSGoogle Scholar
  50. 50.
    K. Kim, W.R.L. Lambrecht, B. Segall, and M. van Schilfgaarde, Phys. Rev. B 56, 7363 (1997).CrossRefADSGoogle Scholar
  51. 51.
    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).CrossRefADSGoogle Scholar
  52. 52.
    W.R.L. Lambrecht, S. Limpijumnong, and B. Segall, MRS Internet J. Nitride Semicond. Res. 4S1, G6.8 (1999).Google Scholar
  53. 53.
    W.J. Fan, J.B. Xia, P.A. Agus, S.T. Tan, S.F. Yu, and X.W. Sun, J. Appl. Phys. 99, 013702 (2006).CrossRefADSGoogle Scholar
  54. 54.
    Y.-I. Kim, K. Page, and R. Seshadri, Appl. Phys. Lett. 90, 101904 (2007).CrossRefADSGoogle Scholar
  55. 55.
    X.F. Fan, H.D. Sun, Z.X. Chen, J.-L. Kuo, and Y.M. Lu, J. Phys: Condens. Matter. 20, 235221 (2008).CrossRefADSGoogle Scholar
  56. 56.
    A. Ashrafi and Y. Segawa, J. Appl. Phys. 104, 123528 (2008).CrossRefADSGoogle Scholar
  57. 57.
    A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 75, 980 (1999).CrossRefADSGoogle Scholar
  58. 58.
    K. Zitouni, A. Kadri, P. Lefebvre, and B. Gil, Superlatt. Microstruct. 39, 91 (2006).CrossRefADSGoogle Scholar
  59. 59.
    G. Coli and K.K. Bajaj, Appl. Phys. Lett. 78, 2861 (2001).CrossRefADSGoogle Scholar
  60. 60.
    A.P. Abiyasa, S.F. Yu, W.J. Fan, and S.P. Lau, IEEE J. Quantum Electron. 42, 455 (2006).CrossRefADSGoogle Scholar
  61. 61.
    S.C. Su, Y.M. Lu, Z.Z. Zhang, C.X. Shan, B.H. Li, D.Z. Shen, B. Yao, J.Y. Zhang, D.X. Zhao, and X.W. Fan, Appl. Phys. Lett. 93, 082108 (2008).CrossRefADSGoogle Scholar
  62. 62.
    F. Bernardini, Nitride Semiconductor Devices: Principles and Simulation, ed. J. Piprek (Weinheim: Wiley-VCH Verlag, 2007), chap. 3, pp. 49–68.Google Scholar
  63. 63.
    A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B 50, 10715 (1994).CrossRefADSGoogle Scholar
  64. 64.
    P. Gopal and N.A. Spaldin, J. Electron. Mater. 35, 538 (2006).CrossRefADSGoogle Scholar
  65. 65.
    M. Yano, K. Hashimoto, K. Fujimoto, K. Koike, S. Sasa, M. Inoue, Y. Uetsuji, T. Ohnishi, and K. Inaba, J. Cryst. Growth 301–302, 353 (2007).CrossRefGoogle Scholar
  66. 66.
    T. Bretagnon, P. Lefebvre, T. Guillet, T. Taliercio, B. Gil, and C. Morhain, Appl. Phys. Lett. 90, 201912 (2007).CrossRefADSGoogle Scholar
  67. 67.
    A. Malashevich and D. Vanderbilt, Phys. Rev. B 75, 045106 (2007).CrossRefADSGoogle Scholar
  68. 68.
    M. Yano, K. Koike, S. Sasa, and M. Inoue, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, ed. C. Jagadish and S.J. Pearton (Oxford: Elsevier, 2006), chap. 11, pp. 371–414.Google Scholar
  69. 69.
    O. Madelung, Semiconductors: Data Handbook, 2nd ed. (Berlin: Springer-Verlag, 2004).Google Scholar
  70. 70.
    U. Rössler, ed., II–VI and I–VII Compounds; Semimagnetic Compounds, vol. III/17b, 22a of Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series (Berlin: Springer-Verlag, 1999).Google Scholar
  71. 71.
    Q. Xu, X.-W. Zhang, W.-J. Fan, S.-S. Li, and J.-B. Xia, Compos. Mater. Sci. 44, 72 (2008).CrossRefGoogle Scholar
  72. 72.
    N.W. Emanetoglu, S. Muthukumar, P. Wu, R.H. Wittstruck, Y. Chen, and Y. Lu, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50, 537 (2003).CrossRefGoogle Scholar
  73. 73.
    D. Groh, R. Pandey, M.B. Sahariah, E. Amzallag, I. Baraille, and M. Rérat, J. Phys. Chem. Solids 70, 789 (2009).CrossRefADSGoogle Scholar
  74. 74.
    V. Coleman, M. Buda, H. Tan, C. Jagadish, M. Phillips, K. Koike, S. Sasa, M. Inoue, and M. Yano, Semicond. Sci. Technol. 21, L25 (2006).CrossRefADSGoogle Scholar
  75. 75.
    Y.-N. Xu and W.Y. Ching, Phys. Rev. B 48, 4335 (1993).CrossRefADSGoogle Scholar
  76. 76.
    A. Ashrafi and Y. Segawa, J. Vac. Sci. Technol. B 23, 2030 (2005).CrossRefGoogle Scholar
  77. 77.
    Y. Noel, C.M. Zicovich-Wilson, B. Civalleri, P. D’Arco, and R. Dovesi, Phys. Rev. B 65, 014111 (2001).CrossRefADSGoogle Scholar
  78. 78.
    P. Gopal and N. Spaldin, Polarization, piezoelectric constants and elastic constants of ZnO, MgO and CdO. http://arxiv.org/abs/cond-mat/0507217v2 (2005).
  79. 79.
    W. Chow and S. Koch, Appl. Phys. Lett. 66, 3004 (1995).CrossRefADSGoogle Scholar
  80. 80.
    N.D. Arora, J.R. Hauser, and D.J. Roulston, IEEE Trans. Electron. Dev. 29, 292 (1982).CrossRefGoogle Scholar
  81. 81.
    G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electron. Dev. 30, 764 (1983).CrossRefGoogle Scholar
  82. 82.
    E. Furno, F. Bertazzi, M. Goano, G. Ghione, and E. Bellotti, Solid State Electron. 52, 1796 (2008).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Enrico Furno
    • 1
    • 2
  • Simone Chiaria
    • 1
  • Michele Penna
    • 1
    • 2
  • Enrico Bellotti
    • 2
  • Michele Goano
    • 1
  1. 1.Dipartimento di ElettronicaPolitecnico di TorinoTorinoItaly
  2. 2.ECE DepartmentBoston UniversityBostonUSA

Personalised recommendations