Journal of Electronic Materials

, Volume 39, Issue 7, pp 945–950 | Cite as

Arsenic Diffusion Study in HgCdTe for Low p-Type Doping in Auger-Suppressed Photodiodes

  • A. M. Itsuno
  • P. Y. Emelie
  • J. D. Phillips
  • S. Velicu
  • C. H. Grein
  • P. S. Wijewarnasuriya


Controllable p-type doping at low concentrations is desired for multilayer HgCdTe samples in a P+/π/N+ structure due to the promise of suppressing Auger processes, and ultimately reduced dark current for infrared detectors operating at a given temperature. In this study, a series of arsenic implantation and annealing experiments have been conducted to study diffusion at low Hg partial pressure with the goal of achieving effective control over dopant profiles at low concentration. Arsenic dopant profiles were measured by secondary ion mass spectroscopy (SIMS), where diffusion coefficients were extracted with values ranging between 3.35 × 10−16 cm2 s−1 and 6 × 10−14 cm2 s−1. Arsenic diffusion coefficients were found to vary strongly with Hg partial pressure and HgCdTe alloy composition, corresponding to variations in Hg vacancy concentration.


Arsenic HgCdTe diffusion coefficient low doping concentration high operating temperature infrared detector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ashley and C.T. Elliott, Electron. Lett. 21, 451 (1985).CrossRefADSGoogle Scholar
  2. 2.
    P.Y. Emelie, J.D. Phillips, S. Velicu, and C.H. Grein, J. Electron. Mater. 36, 846 (2007).CrossRefADSGoogle Scholar
  3. 3.
    A.B. Chen, Y.-M. Lai-Hsu, S. Krishnamurthy, M.A. Berding, and A. Sher, Semincond. Sci. Technol. 5, S100 (1990).CrossRefADSGoogle Scholar
  4. 4.
    M.A. Berding, A. Sher, M. Van Schilfgaarde, A.C. Chen, and J. Arias, J. Electron. Mater. 27, 605 (1998).CrossRefADSGoogle Scholar
  5. 5.
    A.C. Chen, M. Zandian, D.D. Edwall, R.E. De Wames, P.S. Wijewarnasuriya, J.M. Arias, S. Sivananthan, M. Berding, and A. Sher, J. Electron. Mater. 27, 595 (1998).CrossRefADSGoogle Scholar
  6. 6.
    E.C. Piquette, D.D. Edwall, D.L. Lee, and J.M. Arias, J. Electron. Mater. 35, 1346 (2006).CrossRefADSGoogle Scholar
  7. 7.
    M. Zandian, A.C. Chen, D.D. Edwall, J.G. Pasko, and J.M. Arias, Appl. Phys. Lett. 71, 2815 (1997).CrossRefADSGoogle Scholar
  8. 8.
    G.K.O. Tsen, R. Sewell, A.J. Atanacio, K.E. Prince, C.A. Musca, J.M. Dell, J. Antoszewski, and L. Faraone, 2006 Conference on Optoelectronic and Microelectronic Materials and Devices, 55 (2006).Google Scholar
  9. 9.
    P.S. Wijewarnasuriya, G. Brill, Y. Chen, N.K. Dhar, C.H. Grein, S. Velicu, P.Y. Emelie, H. Jung, S. Sivananthan, A. D’Souza, M.G. Stapelbroek, and J. Reekstin, Proc. SPIE 6542, 65420G (2007).CrossRefGoogle Scholar
  10. 10.
    D. Ambrose and C.H.S. Sprake, J. Chem. Thermodyn. 4, 603 (1972).CrossRefGoogle Scholar
  11. 11.
    G.R. Nash, J.F.W. Schiz, C.D. Marsh, P. Ashburn, and G.R. Booker, Appl. Phys. Lett. 75, 3671 (1999).CrossRefADSGoogle Scholar
  12. 12.
    D. Shaw, Semicond. Sci. Technol. 9, 1829 (1994).CrossRefGoogle Scholar
  13. 13.
    L.O. Bubulac, D.D. Edwall, S.J.C. Irvine, E.R. Gertner, and S.H. Shin, J. Electron. Mater. 24, 617 (1995).CrossRefADSGoogle Scholar
  14. 14.
    S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, L.O. Bubulac, and R.E. De Wames, J. Electron. Mater. 24, 609 (1995).CrossRefADSGoogle Scholar
  15. 15.
    D. Shaw, J. Electron. Mater. 24, 587 (1995).CrossRefADSGoogle Scholar
  16. 16.
    J.M. Arias, J.G. Pasko, M. Zandian, S.H. Shin, G.M. Williams, L.O. Bubulac, R.E. De Wames, and W.E. Tennant, J. Electron. Mater. 22, 1049 (1993).CrossRefADSGoogle Scholar
  17. 17.
    L.O. Bubulac, S.J.C. Irvine, E.R. Gertner, J. Bajaj, W.P. Lin, and R. Zucca, Semicond. Sci. Technol. 8, S270 (1993).CrossRefADSGoogle Scholar
  18. 18.
    D. Chandra, M.W. Goodwin, M.C. Chen, and L.K. Magel, J. Electron. Mater. 24, 599 (1995).CrossRefADSGoogle Scholar
  19. 19.
    D. Chandra, D.F. Weirauch, H.F. Schaake, M.A. Kinch, F. Aqariden, C.F. Wan, and H.D. Shih, J. Electron. Mater. 34, 963 (2005).CrossRefADSGoogle Scholar
  20. 20.
    S. Holander-Gleixner, H.G. Robinson, and C.R. Helms, J. Electron. Mater. 27, 672 (1998).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • A. M. Itsuno
    • 1
  • P. Y. Emelie
    • 1
  • J. D. Phillips
    • 1
  • S. Velicu
    • 2
  • C. H. Grein
    • 2
  • P. S. Wijewarnasuriya
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.EPIR TechnologiesBolingbrookUSA
  3. 3.US Army Research LaboratoryAdelphiUSA

Personalised recommendations