Advertisement

Journal of Electronic Materials

, Volume 39, Issue 9, pp 1373–1375 | Cite as

Effect of Ca Doping on the Thermoelectric Performance of Yb14MnSb11

  • Catherine A. Cox
  • Shawna R. Brown
  • G. Jeffrey Snyder
  • Susan M. KauzlarichEmail author
Article

Complex Zintl phases possess low thermal conductivity and can be easily doped to modify the transport properties. Therefore, these phases have the potential to be good thermoelectric materials by simply controlling carrier concentration. Yb14MnSb11 is a Zintl phase that has shown promise as a p-type thermoelectric material for high-temperature power generation. A Sn-flux synthetic route was used to make the new phase, Yb13CaMnSb11. The high-temperature thermoelectric properties were measured on polycrystalline hot-pressed pellets and compared with Yb14MnSb11. Substitution of the lighter isovalent Ca for Yb should reduce the lattice thermal conductivity by mass disorder scattering, and a noticeable reduction is seen in thermal diffusivity measurements at high temperature. There may also be a carrier concentration effect by employing the more electropositive Ca.

Keywords

Zintl Yb14MnSb11 Ca dopant semiconductor intermetallic high-temperature thermoelectric high zT zT = 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefADSPubMedGoogle Scholar
  3. 3.
    C.A. Cox, E.S. Toberer, A.A. Levchenko, S.R. Brown, G.J. Snyder, A. Navrotsky, and S.M. Kauzlarich, Chem. Mater. 21, 1354 (2009).CrossRefGoogle Scholar
  4. 4.
    S.R. Brown, E.S. Toberer, T. Ikeda, C.A. Cox, F. Gascoin, S.M. Kauzlarich, and G.J. Snyder, Chem. Mater. 20, 3412 (2008).CrossRefGoogle Scholar
  5. 5.
    E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).CrossRefGoogle Scholar
  6. 6.
    E.S. Toberer, S.R. Brown, T. Ikeda, S.M. Kauzlarich, and G.J. Snyder, Appl. Phys. Lett. 93, 062110 (2008).CrossRefADSGoogle Scholar
  7. 7.
    F. Gascoin, S. Ottensmann, D. Stark, S.M. Haile, and G.J. Snyder, Adv. Funct. Mater. 15, 1860 (2005).CrossRefGoogle Scholar
  8. 8.
    N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Oxford: Elsevier, 1988).Google Scholar
  9. 9.
    J.E. Huheey, E.A. Keiter, and R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. (New York: HarperCollins College, 1993).Google Scholar
  10. 10.
    S. Bobev, J.D. Thompson, J.L. Sarrao, M.M. Olmstead, H. Hope, and S.M. Kauzlarich, Inorg. Chem. 43, 5044 (2004).CrossRefPubMedGoogle Scholar
  11. 11.
    E.S. Toberer, A.F. May, B.C. Melot, E. Flage-Larsen, and G.J. Snyder, Dalton Trans. 39, 1046 (2010).CrossRefPubMedGoogle Scholar
  12. 12.
    I. Todorov, D.Y. Chung, L.H. Ye, A.J. Freeman, and M.G. Kanatzidis, Inorg. Chem. 48, 4768 (2009).CrossRefPubMedGoogle Scholar
  13. 13.
    A. Rehr, T.Y. Kuromoto, S.M. Kauzlarich, J. Delcastillo, and D.J. Webb, Chem. Mater. 6, 93 (1994).CrossRefGoogle Scholar
  14. 14.
    I.R. Fisher, T.A. Wiener, S.L. Bud’ko, P.C. Canfield, J.Y. Chan, and S.M. Kauzlarich, Phys. Rev. B 59, 13829 (1999).CrossRefADSGoogle Scholar
  15. 15.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefADSPubMedGoogle Scholar
  16. 16.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Catherine A. Cox
    • 1
  • Shawna R. Brown
    • 1
  • G. Jeffrey Snyder
    • 2
  • Susan M. Kauzlarich
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations