Advertisement

Journal of Electronic Materials

, Volume 39, Issue 6, pp 709–714 | Cite as

Imaging Catastrophic Optical Mirror Damage in High-Power Diode Lasers

  • Mathias Ziegler
  • Jens W. Tomm
  • Ute Zeimer
  • Thomas Elsaesser
Article

Abstract

We image catastrophic optical mirror damage (COMD) in red- and infrared-emitting high-power broad-area diode lasers by combining highly COMD-selective thermography, near-field imaging, scanning electron microscopy, and cathodoluminescence. All techniques exhibit strong correlations in terms of COMD location and strength and allow for an unambiguous decision about COMD occurrence. In particular, temperatures en route to and during COMD are measured, and the concept of a critical facet temperature that induces thermal runaway is supported.

Keywords

High-power diode lasers catastrophic optical mirror damage laser degradation thermography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge M. Bou Sanayeh (Notre Dame University, Louaize, Lebanon), P. Brick (OSRAM Opto Semiconductors GmbH, Regensburg, Germany), C. Matthiesen, (Cambridge University, Cambridge, UK), D. Reeber and H. Lawrenz (Ferdinand-Braun-Institut, Berlin, Germany), H.E. Larsen, P.M. Petersen, and P.E. Andersen (Technical University of Denmark, Roskilde, Denmark) for expert technical assistance, helpful discussion, and for providing us with laser samples and equipment, and Funding by the European Commission within the project WWW.BRIGHTER.EU under Contract No. IST-2005-035266 is acknowledged.

References

  1. 1.
    C.H. Henry, P.M. Petroff, R.A. Logan, and F.R. Meritt, J. Appl. Phys. 50, 3721 (1979).CrossRefADSGoogle Scholar
  2. 2.
    M. Ziegler, J.W. Tomm, T. Elsaesser, C. Matthiesen, M. Bou Sanayeh, and P. Brick, Appl. Phys. Lett. 92, 103514 (2008).CrossRefADSGoogle Scholar
  3. 3.
    M. Ziegler, J.W. Tomm, D. Reeber, T. Elsaesser, U. Zeimer, H.E. Larsen, P.M. Petersen, and P.E. Andersen, Appl. Phys. Lett. 94, 91101 (2009).CrossRefADSGoogle Scholar
  4. 4.
    W.C. Tang, H.J. Rosen, P. Vettiger, and D.J. Webb, Appl. Phys. Lett. 58, 557 (1991).CrossRefADSGoogle Scholar
  5. 5.
    M. Bou Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Müller, M. Reufer, K. Streubel, J.W. Tomm, and G. Bacher, Appl. Phys. Lett. 91, 041115 (2007).CrossRefADSGoogle Scholar
  6. 6.
    W. Nakwaski, J. Appl. Phys. 57, 2424 (1984).CrossRefADSGoogle Scholar
  7. 7.
    W.R. Smith, J. Appl. Phys. 87, 8276 (2000).CrossRefADSGoogle Scholar
  8. 8.
    K.H. Park, J.K. Lee, D.H. Jang, H.S. Cho, C.S. Park, K.E. Pyun, J.Y. Jeong, S. Nahm, and J. Jeong, Appl. Phys. Lett. 73, 2567 (1998).CrossRefADSGoogle Scholar
  9. 9.
    J.H. Jacob, R. Petr, M.A. Jaspan, S.D. Swartz, M.T. Knapczyk, A.M. Flusberg, A.K. Chin, and I. Smilanski, Proc. SPIE 7198, 719815 (2009).CrossRefGoogle Scholar
  10. 10.
    B.W. Hakki and F.R. Nash, J. Appl. Phys. 45, 3907 (1974).CrossRefADSGoogle Scholar
  11. 11.
    O. Ueda, K. Wakao, S. Komiya, A. Yamaguchi, S. Isozuma, and I. Umenu, J. Appl. Phys. 58, 3996 (1985).CrossRefADSGoogle Scholar
  12. 12.
    J. LeClech, M. Ziegler, J. Mukherjee, J.W. Tomm, T. Elsaesser, J.-P. Landesman, B. Corbett, J.G. Mclnerney, J.P. Reithmaier, S. Deubert, A. Forchel, W. Nakwaski, and R.P. Sarzała, J. Appl. Phys. 105, 014502 (2009).CrossRefADSGoogle Scholar
  13. 13.
    M. Ziegler, Thermography of Semiconductor Lasers (Ph.D. Thesis, Humboldt-Universität zu Berlin, Germany, 2009) urn:nbn:de:kobv:11-10099932.

Copyright information

© TMS 2010

Authors and Affiliations

  • Mathias Ziegler
    • 1
  • Jens W. Tomm
    • 1
  • Ute Zeimer
    • 2
  • Thomas Elsaesser
    • 1
  1. 1.Max-Born-InstitutBerlinGermany
  2. 2.Ferdinand-Braun-Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations