Journal of Electronic Materials

, Volume 39, Issue 4, pp 447–455 | Cite as

Impedance Response and Dielectric Relaxation in Liquid-Phase Sintered Zn2SnO4-SnO2 Ceramics

  • M. Slankamenac
  • T. IvetićEmail author
  • M. V. Nikolić
  • N. Ivetić
  • M. Živanov
  • V. B. Pavlović


Impedance/admittance and dielectric spectroscopy were used to investigate the effect of temperature on the electrical response of liquid-phase sintered Zn2SnO4-SnO2 ceramics. The measurements were performed over a wide frequency range (100 Hz to 10 MHz) at different temperatures. The real and the imaginary part of the complex impedance traced semicircles in the complex plane. The resistance and the capacitance of bulk and grain-boundary regions were determined by modeling the experimental results using several equivalent circuits taking into account bulk deep trap states. Admittance complex diagrams were also determined in order to understand better the conduction mechanisms occurring in the polycrystalline Zn2SnO4-SnO2 system.


Dielectric properties electrical properties solid-state ceramics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was performed within the projects “Amorphous and Nanostructural Chalcogenides” (No. 141026B) and “Investigations of Correlations in Triad Synthesis-Structure-Properties for Functional Materials” (No. 142011G) financed by the Ministry for Science and Technological Development of the Republic of Serbia.


  1. 1.
    K.E. Sickafus, J.M. Grimes, and N.W. Grimes, J. Am. Ceram. Soc. 82, 3279 (1999).Google Scholar
  2. 2.
    M.A.L. Nobre and S. Lanfredi, Mater. Res. 6, 151 (2003).Google Scholar
  3. 3.
    S. Ezhilvalavam and T.R.N. Kutty, J. Appl. Phys. Lett. 68, 2693 (1996).CrossRefADSGoogle Scholar
  4. 4.
    A. Rong, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, J.Q. Qu, and D.Y. Song, J. Phys. Chem. B 110, 14754 (2006).CrossRefPubMedGoogle Scholar
  5. 5.
    T. Lana-Villarreal, G. Boschloo, and A. Hagfelt, J. Phys. Chem. C 111, 5549 (2007).CrossRefGoogle Scholar
  6. 6.
    B. Tan, E. Toman, Y. Li, and Y. Wu, J. Am. Chem. Soc. 129, 4162 (2007).CrossRefPubMedGoogle Scholar
  7. 7.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).CrossRefGoogle Scholar
  8. 8.
    P.R. Bueno, J.A. Varela, and E. Longo, J. Eur. Ceram. Soc. 28, 505 (2008).CrossRefGoogle Scholar
  9. 9.
    A. Anastasiou, M.H.J. Lee, C. Leach, and R. Freer, J. Eur. Ceram. Soc. 24, 1171 (2004).CrossRefGoogle Scholar
  10. 10.
    G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, and P. Qi, Chin. Phys. Lett. 3, 750 (2005).ADSGoogle Scholar
  11. 11.
    V. Srikant and D.R. Clarke, J. Appl. Phys. 83, 5447 (1998).CrossRefADSGoogle Scholar
  12. 12.
    S.A. Pianaro, P.R. Bueno, and E. Longo, J. Mater. Sci. Lett. 14, 692 (1995).CrossRefGoogle Scholar
  13. 13.
    N. Daneu, A. Recnik, S. Bernik, and D. Kolar, J. Am. Ceram. Soc. 83, 3165 (2000).CrossRefGoogle Scholar
  14. 14.
    M.A. McCoy, R.W. Grimes, and W.E. Lee, J. Mater. Res. 11, 2009 (1996).CrossRefADSGoogle Scholar
  15. 15.
    J. Kim, T. Kimura, and T. Yamaguchi, J. Mater. Sci. 24, 2581 (1989).CrossRefADSGoogle Scholar
  16. 16.
    J. Kim, T. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc. 72, 1390 (1989).CrossRefGoogle Scholar
  17. 17.
    D. Makovec, D. Kolar, and M. Trotelj, Mater. Res. Bull. 28, 803 (1993).CrossRefGoogle Scholar
  18. 18.
    T. Hashemi, H.M. Al-Allak, J. Illingsworth, A.W. Brinkman, and J. Woods, J. Mater. Sci. Lett. 9, 776 (1990).CrossRefGoogle Scholar
  19. 19.
    I. Stambolova, A. Toneva, V. Blaskov, D. Radev, Ya. Tsvetanova, S. Vassilev, and P. Peshev, J. Alloys Compd. 391, L1 (2005).CrossRefGoogle Scholar
  20. 20.
    V. Gil, J. Tartaj, C. Moure, and P. Duran, J. Eur. Ceram. Soc. 27, 801 (2007).CrossRefGoogle Scholar
  21. 21.
    J. Luo, H. Wang, and Y.-M. Chiang, J. Am. Ceram. Soc. 82, 916 (1999).CrossRefGoogle Scholar
  22. 22.
    T. Ivetić, M.V. Nikolić, M. Slankamenac, M. Živanov, D. Minić, P.M. Nikolić, and M.M. Ristić, Sci. Sinter. 39, 229 (2007).CrossRefGoogle Scholar
  23. 23.
    T. Ivetić, M.V. Nikolić, K.M. Paraskevopoulos, E. Pavlidou, T.T. Zorba, V. Blagojević, P.M. Nikolić, and M.M. Ristić, J. Microsc. 232, 498 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Peiteado, M.A. de la Rubia, M.J. Velasco, F.J. Valle, and A.C. Caballero, J. Eur. Ceram. Soc. 25, 1675 (2005).CrossRefGoogle Scholar
  25. 25.
    L.P. Curecheriu, R. Frunza, and A. Ianculescu, Process. Appl. Ceram. 2, 81 (2008).Google Scholar
  26. 26.
    M.A.L. Nobre and S. Lanfredi, J. Phys. Condens. Matter. 12, 7833 (2000).CrossRefADSGoogle Scholar
  27. 27.
    P.K. Larsen and R. Metselaar, Phys. Rev. B 8, 2016 (1973).CrossRefADSGoogle Scholar
  28. 28.
    T. Ivetić (D.Sc. thesis, Faculty of Physical Chemistry, University of Belgrade, 2008).Google Scholar
  29. 29.
    H. Zhu, D. Yang, G. Yu, H. Zhang, D. Jin, and K. Yao, J. Phys. Chem. B 110, 7631 (2006).CrossRefPubMedGoogle Scholar
  30. 30.
    Y. Iglesias, M. Peiteado, J. De Frutos, and A.C. Caballero, J. Eur. Ceram. Soc. 27, 3931 (2007).CrossRefGoogle Scholar
  31. 31.
    T.J. Coutts, D.L. Young, X. Li, W.P. Mulligan, and X.J. Wu, Vac. Sci. Technol. A 18, 2646 (2000).CrossRefADSGoogle Scholar
  32. 32.
    G. Branković, Z. Branković, L.P.S. Santos, E. Longo, M.R. Davolos, and J.A. Varela, Mater. Sci. Forum 416, 651 (2003).CrossRefGoogle Scholar
  33. 33.
    J. Maier and W. Göpel, J. Solid State Chem. 72, 293 (1988).CrossRefADSGoogle Scholar
  34. 34.
    D. Mančić, V. Paunović, M. Vijatović, B. Stojanović, and Lj. Živković, Sci. Sinter. 40, 283 (2008).CrossRefGoogle Scholar
  35. 35.
    N. Hirose and A.R. West, J. Am. Ceram. Soc. 79, 1633 (1996).CrossRefGoogle Scholar
  36. 36.
    F.D. Morrison, D.C. Sinclair, and A.R. West, J. Am. Ceram. Soc. 84, 474 (2001).CrossRefGoogle Scholar
  37. 37.
    A.R. West, D.C. Sinclair, and N. Hirose, J. Electroceram. 11, 65 (1997).CrossRefGoogle Scholar
  38. 38.
    J.R. Macdonald, Solid State Ionics 176, 1961 (2005).CrossRefGoogle Scholar
  39. 39.
    E.J. Abram and D.C. Sinclair, J. Electroceram. 10, 165 (2003).CrossRefGoogle Scholar
  40. 40.
    S. Komornicki, M. Radecka, and M. Rekas, J. Mater. Sci. 12, 11 (2001).Google Scholar
  41. 41.
    P.R. Bueno, J.A. Varela, and E. Longo, J. Eur. Ceram. Soc. 27, 4313 (2007).CrossRefGoogle Scholar
  42. 42.
    P.R. Bueno, E.R. Leite, M.M. Oliveira, M.O. Orlandi, and E. Longo, Appl. Phys. Lett. 79, 48 (2001).CrossRefADSGoogle Scholar
  43. 43.
    G.J. Brug, A.L.G. van Eeden, M. Sluyters-Rehbach, and J. Sluyters, J. Electroanal. Chem. 176, 275 (1984).CrossRefGoogle Scholar
  44. 44.
    M.A. Alim, J. Am. Ceram. Soc. 72, 28 (1989).CrossRefGoogle Scholar
  45. 45.
    B.S. Chiou and M.-C. Chung, J. Electron. Mater. 20, 885 (1991).CrossRefADSGoogle Scholar
  46. 46.
    G. Garcia-Belmonte, J. Bisquert, and F. Fabregat-Santiago, Solid State Electron. 43, 2123 (1999).CrossRefADSGoogle Scholar
  47. 47.
    P.R. Bueno, M.M. Oliveira, W.K. Bacelar-Junior, E.R. Leite, E. Longo, G. Garcia-Belmonte, and J. Bisquert, J. Appl. Phys. 91, 6007 (2002).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • M. Slankamenac
    • 1
  • T. Ivetić
    • 2
    Email author
  • M. V. Nikolić
    • 3
  • N. Ivetić
    • 1
  • M. Živanov
    • 1
  • V. B. Pavlović
    • 2
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadRepublic of Serbia
  2. 2.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeRepublic of Serbia
  3. 3.Institute for Multidisciplinary ResearchBelgradeRepublic of Serbia

Personalised recommendations