Advertisement

Journal of Electronic Materials

, Volume 39, Issue 4, pp 456–463 | Cite as

Evolution of the AgCdO Contact Material Surface Microstructure with the Number of Arcs

  • Frédéric Pons
  • Mohammed Cherkaoui
  • Idriss Ilali
  • Serge Dominiak
Article

This paper describes a study of the evolution of the AgCdO contact material surface microstructure as a function of the number of electrical arcs imposed on the switching surface. Five power switching devices were tested under different conditions. They were subjected to, respectively, 1, 2, 3, 10, and 100 electrical arcs under the same operating conditions: supply current of 400 A, circuit voltage of 28 V direct current (DC), and resistive load. For the analysis, a binocular microscope and a scanning electron microscope with an energy-dispersive x-ray spectrometer were used.

Keywords

Arc erosion contact material AgCdO  scanning electron microscope (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge Adeline Aubouin (Research Engineer at Leach Int.), for all her contributions to the project, Jean-Sébastien Lecomte (Research Engineer at LETAM), for his help with the measurements, and Pascal Wederich (Research Engineer at Leach Int.), Jean-Michel Sigaud (Leach Int. President), Dominique Bauthian (Leach Int. General Manager), and Jean Michel Stocklouser (Leach Int. R&D Manager), for their support.

References

  1. 1.
    C. Bernauer, R. Hochspannungsgeräte, V. Behrens, and T. Honig, Proceedings of the 51st IEEE Holm Conference on Electrical Contacts (Chicago, IL: IEEE, 2005), p. 42.Google Scholar
  2. 2.
    O. Nilsson, F. Hauner, and D. Jeannot, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts (Seattle, WA: IEEE, 2004), p. 70.Google Scholar
  3. 3.
    J.-W. Wan, J.-G. Zhang, and M.-Z. Rong, Proceedings of the 44th IEEE Holm Conference on Electrical Contacts (Arlington, VA: IEEE, 1998), p. 202.Google Scholar
  4. 4.
    P.C. Wingert and C.-H. Leung, IEEE Trans. Compon. Hybr. 10, 56 (1987).CrossRefGoogle Scholar
  5. 5.
    D. McDonnell, Proceedings of the 40th IEEE Holm Conference on Electrical Contacts (Chicago, IL: IEEE, 1994), p. 253.Google Scholar
  6. 6.
    R. Michal and K.E. Saeger, Proceedings of the 34th IEEE Holm Conference on Electrical Contacts (San Francisco, CA: IEEE, 1988), p. 121.Google Scholar
  7. 7.
    C.H. Leung and A. Lee, IEEE Trans. Compon. Hybr. 15, 146 (1992).CrossRefGoogle Scholar
  8. 8.
    V. Behrens, T. Honig, A. Kraus, R. Michal, K. Saeger, R. Schmidberger, and T. Staneff, IEEE Trans. Compon. Packag. A 17, 24 (1994).CrossRefGoogle Scholar
  9. 9.
    F. Hauner, D. Jeannot, K. McNeilly, and J. Pinard, Proceedings of the 46th IEEE Holm Conference on Electrical Contacts (Chicago, IL: IEEE, 2000), p. 225.Google Scholar
  10. 10.
    W. Xixiu, D. Meihua, L. Zhenbiao, and L. Chengyan, Proceedings of the 49th IEEE Holm Conference on Electrical Contacts (Washington, DC: IEEE, 2003), p. 139.Google Scholar
  11. 11.
    V. Behrens, T. Honig, and A. Kraus, Proceedings of the 46th IEEE Holm Conference on Electrical Contacts (Chicago, IL: IEEE, 2000), p. 235.Google Scholar
  12. 12.
    L. Xiangjun, F. Xiao, and F. Hongjun, Proceedings of the 49th IEEE Holm Conference on Electrical Contacts (Washington, DC: IEEE, 2003), p. 145.Google Scholar
  13. 13.
    C. Leung, E. Streicher, and D. Fitzgerald, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts (Seattle, WA: IEEE, 2004), p. 64.Google Scholar
  14. 14.
    D. McDonnell, J. Gardener, and J. Gondusky, Proceedings of the 39th IEEE Holm Conference on Electrical Contacts (Pittsburgh, PA: IEEE, 1993), p. 37.Google Scholar
  15. 15.
    Y.S. Shen and L.J. Gould, Proceedings of the 33rd IEEE Holm Conference on Electrical Contacts (Chicago, IL: IEEE, 1987), p. 157.Google Scholar
  16. 16.
    A. Selzer, J.W. Dieball, and D. Litchman, IEEE Trans. Parts Hybr. Packag. 11, 139 (1975).CrossRefGoogle Scholar
  17. 17.
    E.A. Owen, J. Rodgers, and J.C. Guthrie, J. Inst. Met. 65, 457 (1939).Google Scholar
  18. 18.
    H.C. Furtado and V.L.A.D. Silveira, IEEE Trans. Compon. Hybr. 11, 68 (1988).CrossRefGoogle Scholar
  19. 19.
    Y.S. Shen, E.J. Zdanuk, and R.H. Krock, IEEE Trans. Parts Hybr. Packag. 8, 16 (1972).CrossRefGoogle Scholar
  20. 20.
    R.C. Bevington and H.J. Kim, IEEE Trans. Compon. Hybr. 2, 46 (1979).CrossRefGoogle Scholar
  21. 21.
    R. Kossowsky and P.G. Slade, IEEE Trans. Parts Hybr. Packag. 9, 39 (1973).CrossRefGoogle Scholar
  22. 22.
    P.C. Wingert and H.J. Kim, IEEE Trans. Compon. Hybr. 8, 119 (1985).CrossRefGoogle Scholar
  23. 23.
    Y.-S. Shen, IEEE Trans. Compon. Hybr. 6, 81 (1983).CrossRefGoogle Scholar
  24. 24.
    P.C. Wingert and G. Horn, IEEE Trans. Compon. Hybr. 16, 190 (1993).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Frédéric Pons
    • 1
    • 2
    • 3
  • Mohammed Cherkaoui
    • 1
    • 2
  • Idriss Ilali
    • 4
  • Serge Dominiak
    • 3
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.UMI 2958 Georgia Tech-CNRS, Georgia Tech LorraineMetzFrance
  3. 3.Laboratoire de Physique et Mécanique des MatériauxUniversité Paul VerlaineMetz France
  4. 4.Esterline Power Systems (Ex Leach International)SarralbeFrance

Personalised recommendations