Journal of Electronic Materials

, Volume 39, Issue 5, pp 526–529 | Cite as

MOS Characteristics of C-Face 4H-SiC

  • Z. Chen
  • A.C. Ahyi
  • X. Zhu
  • M. Li
  • T. Isaacs-Smith
  • J.R. Williams
  • L.C. Feldman
Article

Abstract

Metal–oxide–semiconductor (MOS) capacitors and MOS field-effect transistors (MOSFETs) fabricated on the carbon face of 4H-SiC were characterized following different postoxidation annealing methods used to passivate the oxide–semiconductor (O–S) interface. Of the various processes studied, sequential postoxidation annealing in NO followed by atomic hydrogen gave the lowest interface trap density (D it). Direct oxidation/passivation in NO yielded somewhat better IV characteristics, though all passivation ambients produced approximately the same breakdown field strength. n-Channel MOSFETs showed high channel mobility at low field, which is likely caused by the presence of mobile ions at the O–S interface. Comparisons with the silicon face are presented for interface trap density, oxide breakdown field, and channel mobility. These comparisons suggest that the carbon face does not offer significant performance advantages.

Keywords

4H-SiC carbon face interface traps oxide breakdown channel mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by ARL under Contract ARMY-W911NF-07-2-0046 (Aivars Lelis, Technical Program Manager), by TARDEC under Contract W56H2V-06-C-0228 (Terrence Burke, Technical Program Manager), by the Auburn University Space Research Institute, and by the Auburn University Natural Resources Management and Development Institute.

References

  1. 1.
    J.B. Casady and R.W. Johnson, Solid State Electron. 39, 1409 (1996).CrossRefADSGoogle Scholar
  2. 2.
    J.C. Zolper, Solid State Electron. 42, 2153 (1998).CrossRefADSGoogle Scholar
  3. 3.
    S. Dhar, S. Wang, J.R. Williams, S.T. Pantelides, and L.C. Feldman, Mater. Res. Bull. 30, 288 (2005).Google Scholar
  4. 4.
    J.A. Cooper Jr. and A. Agarwal, Proc. IEEE 90, 956 (2002).CrossRefGoogle Scholar
  5. 5.
    G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M.D. Ventra, S.T. Pantelides, L.C. Feldman, and R.A. Weller, Appl. Phys. Lett. 76, 1713 (2000).CrossRefADSGoogle Scholar
  6. 6.
    P. Jamet and S. Dimitrijev, Appl. Phys. Lett. 79, 323 (2001).CrossRefADSGoogle Scholar
  7. 7.
    K. Fukuda, M. Kato, S. Harada, and K. Kojima, Mater. Sci. Forum 527, 1043 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Dhar, L.C. Feldman, S. Wang, T. Isaacs-Smith, and J.R. Williams, J. Appl. Phys. 98, 014902 (2005).CrossRefADSGoogle Scholar
  9. 9.
    G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour, IEEE Electron. Dev. Lett. 22, 176 (2001).CrossRefADSGoogle Scholar
  10. 10.
    S.W. Wang, S. Dhar, S.R. Wang, A.C. Ahyi, A. Franceschetti, J.R. Williams, L.C. Feldman, and S.T. Pantelides, Phys. Rev. Lett. 98, 026101 (2007).CrossRefPubMedADSGoogle Scholar
  11. 11.
    T.L. Biggerstaff, C.L. Reynolds, T. Zheleva, A. Lelis, D. Habersat, S. Haney, S.–H. Ryu, A. Agarwal, and G. Duscher, Appl. Phys. Lett. 95, 032108 (2009).CrossRefADSGoogle Scholar
  12. 12.
    Y. Song, S. Dhar, L.C. Feldman, G. Chung, and J.R. Williams, J. Appl. Phys. 95, 4953 (2004).CrossRefADSGoogle Scholar
  13. 13.
    Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui, M. Qi, J.A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger, Appl. Phys. Lett. 92, 092102 (2008).CrossRefADSGoogle Scholar
  14. 14.
    J. Pernot, S. Contreras, J. Camassel, J.L. Robert, W. Zawadzki, E. Neyret, and L. Di Cioccio, Appl. Phys. Lett. 77, 4359 (2000).CrossRefADSGoogle Scholar
  15. 15.
    G. Gudjonsson, H.O. Olafsson, F. Allerstam, P.A. Nilsson, E.O. Sveinbjornsson, H. Zirath, T. Rodle, and R. Jos, IEEE Electron. Dev. Lett. 26, 96 (2005).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Z. Chen
    • 1
  • A.C. Ahyi
    • 1
  • X. Zhu
    • 1
  • M. Li
    • 1
  • T. Isaacs-Smith
    • 1
  • J.R. Williams
    • 1
  • L.C. Feldman
    • 2
  1. 1.Physics DepartmentAuburn UniversityAuburnUSA
  2. 2.Institute of Advanced Materials, Devices and NanotechnologyRutgers UniversityPiscatawayUSA

Personalised recommendations