Journal of Electronic Materials

, Volume 39, Issue 7, pp 996–1000

Cyclic Annealing During Metalorganic Vapor-Phase Epitaxial Growth of (211)B CdTe on (211) Si Substrates

  • S. R. Rao
  • S. S. Shintri
  • J. K. Markunas
  • R. N. Jacobs
  • I. B. Bhat
Article

Abstract

High-quality (211)B CdTe buffer layers on Si substrates are required to enable Hg1–xCdxTe growth and device fabrication on lattice-mismatched Si substrates. Metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si substrates using Ge and ZnTe interlayers has been achieved. Cyclic annealing has been used during growth of thick CdTe layers in order to improve crystal quality. The best (211)B CdTe/Si films grown in this study display a low x-ray diffraction (XRD) rocking-curve full-width at half-maximum (FWHM) of 85 arcsec and etch pit density (EPD) of 2 × 106 cm−2. These values are the best reported for MOVPE-grown (211) CdTe/Si and are comparable to those for state-of-the-art molecular beam epitaxy (MBE)-grown CdTe/Si.

Keywords

MOVPE (211) orientation CdTe silicon germanium ZnTe arsenic thermal cycling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Koestner and H.F. Schaake, J. Vac. Sci. Technol. A 6, 2834 (1988).CrossRefADSGoogle Scholar
  2. 2.
    T.J. de Lyon, D. Rajavel, S.M. Johnson, and C.A. Cockrum, Appl. Phys. Lett. 66, 2119 (1995).CrossRefADSGoogle Scholar
  3. 3.
    N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca-Riba, and J.H. Dinan, J. Vac. Sci. Technol. B 14, 2366 (1996).CrossRefGoogle Scholar
  4. 4.
    S. Rujirawat, L.A. Almeida, Y.P. Chen, S. Sivananthan, and D.J. Smith, Appl. Phys. Lett. 71, 1810 (1997).CrossRefADSGoogle Scholar
  5. 5.
    M. Carmody, J.G. Pasko, D. Edwall, M. Daraselia, L.A. Almeida, J. Molstad, J.H. Dinan, J.K. Markunas, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 33, 531 (2004).CrossRefADSGoogle Scholar
  6. 6.
    W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Schaake, J. Electron. Mater. 24, 505 (1995).CrossRefADSGoogle Scholar
  7. 7.
    K. Jowikowski and A. Rogalski, J. Electron. Mater. 29, 736 (2000).CrossRefADSGoogle Scholar
  8. 8.
    S.R. Rao, S.S. Shintri, and I.B. Bhat, J. Electron. Mater. 38, 1618 (2009).CrossRefADSGoogle Scholar
  9. 9.
    M. Niraula, K. Yasuda, H. Ohnishi, K. Eguchi, H. Takahashi, K. Noda, and Y. Agata, J. Electron. Mater. 35, 1257 (2006).CrossRefADSGoogle Scholar
  10. 10.
    W. Wang and I. Bhat, J. Electron. Mater. 24, 451 (1995).CrossRefADSGoogle Scholar
  11. 11.
    W. Kern and D.A. Puotinen, RCA Rev. 31, 187 (1970).Google Scholar
  12. 12.
    C.A. Larsen, N.I. Buchan, S.H. Li, and G.B. Stringfellow, J. Cryst. Growth 93, 15 (1988).CrossRefADSGoogle Scholar
  13. 13.
    Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).CrossRefADSGoogle Scholar
  14. 14.
    R.F. Brebrick and A.J. Strauss, J. Phys. Chem. Solids 25, 1441 (1964).CrossRefADSGoogle Scholar
  15. 15.
    A.A. Kudryavtsev and G.P. Ustyugov, Russ. J. Inorg. Chem. 6, 2421 (1961).Google Scholar
  16. 16.
    R.F. Brebrick, J. Phys. Chem. 72, 1032 (1968).CrossRefGoogle Scholar
  17. 17.
    J.D. Benson, R.N. Jacobs, J.K. Markunas, M. Jaime- Vasquez, P.J. Smith, L.A. Almeida, M. Martinka, M.F. Vilela, and U. Lee, J. Electron. Mater. 37, 1231 (2008).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • S. R. Rao
    • 1
  • S. S. Shintri
    • 1
  • J. K. Markunas
    • 2
  • R. N. Jacobs
    • 2
  • I. B. Bhat
    • 1
  1. 1.Department of Electrical, Computer and Systems EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.U.S. Army RDECOM CERDEC, NVESDFt. BelvoirUSA

Personalised recommendations