Journal of Electronic Materials

, Volume 39, Issue 4, pp 371–375 | Cite as

Growth of High-Density Self-Aligned Carbon Nanotubes and Nanofibers Using Palladium Catalyst

  • S. Vollebregt
  • J. Derakhshandeh
  • R. Ishihara
  • M. Y. Wu
  • C. I. M. Beenakker


In this paper we demonstrate vertical self-aligned growth of carbon nanotubes (CNT) and carbon nanofibers (CNF) using 1 nm of Pd as the catalyst material. Results were compared with those obtained using traditional catalysts (Co, Fe, and Ni). Pd is of interest as it has been demonstrated to be an excellent material for electrical contact to nanotubes. CNT were grown using plasma-enhanced chemical vapor deposition (PECVD) at 450°C to 500°C and using atmospheric-pressure chemical vapor deposition (APCVD) between 450°C and 640°C. The results were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. High-density (1011 cm−2 to 1012 cm−2) self-aligned CNT growth was obtained using APCVD and Pd as the catalyst, while Co and Fe resulted in random growth. TEM revealed that the CNT grown by Pd with PECVD form large bundles of tubes, while Ni forms large-diameter CNF. It was found that the CNT grown using Pd or Ni are of low quality compared with those grown by Co and Fe.


Carbon nanotubes carbon nanofibers chemical vapor deposition palladium catalyst Raman spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors want to thank STW for funding the project and Dr. Kenneth Teo at AIXTRON for support with the CNT growth. Furthermore, we thank Marco van der Krogt of the Kavli Institute of Nanoscience for the deposition of the metals using e-beam evaporation.


  1. 1.
    S.-H. Tsai, C.-T. Shiu, S.-H. Lai, and H.C. Shih, Carbon 40, 1597 (2002).CrossRefGoogle Scholar
  2. 2.
    R. Vajtai, K. Kordás, B.Q. Wei, J. Békési, S. Leppävuori, T.F. George, and P.M. Ajayan, Mater. Sci. Eng. C 19, 271 (2002).CrossRefGoogle Scholar
  3. 3.
    Y.M. Wong, S. Wei, W.P. Kang, J.L. Davidson, W. Hofmeister, J.H. Huang, and Y. Cui, Diam. Relat. Mater. 13, 2105 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Breton, M. Verstraete, R. Fleurier, T. Cacciaguerra, J.-C. Charlier, A.-L. Thomann, and J.-P. Salvetat, Carbon 42, 1049 (2004).CrossRefGoogle Scholar
  5. 5.
    S.-Y. Lee, M. Yamada, and M. Miyake, Sci. Technol. Adv. Mater. 6, 420 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. Ominami, Q. Ngo, A.J. Austin, H. Yoong, C.Y. Yang, A.M. Cassell, B.A. Cruden, J. Li, and M. Meyyappan, Appl. Phys. Lett. 87, 233105 (2005).CrossRefADSGoogle Scholar
  7. 7.
    X. Tao, X. Zhang, J. Wang, J. Cheng, F. Liu, J. Luo, and Z. Luo, IEEE NEMS ‘06, 559 (2006).Google Scholar
  8. 8.
    Q. Ngo, A.M. Cassell, V. Radmilovic, J. Li, S. Krishnan, M. Meyyappan, and C.Y. Yang, Carbon 45, 424 (2007).CrossRefGoogle Scholar
  9. 9.
    A. Naeemi and J.D. Meindl, Carbon Nanotube Electronics (New York: Series on Integrated Circuits and Systems, Springer Science, 2009), pp. 163–190.Google Scholar
  10. 10.
    P. Tarakeshwar, J.J. Palacios, and D.M. Kim, IEEE Trans. Nanotechnol. 7, 124 (2008).CrossRefADSGoogle Scholar
  11. 11.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).CrossRefPubMedADSGoogle Scholar
  12. 12.
    G.F. Close and H.-S.P. Wong, Int. El. Devices Meet. 2007 (2007), p. 203.Google Scholar
  13. 13.
    Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, Science 285, 1719 (1999).CrossRefPubMedGoogle Scholar
  14. 14.
    L. Zhu, Y. Sun, J. Xu, Z. Zhang, D.W. Hess, and C.P. Wong, P. Electr. C. 55, 44 (2005).Google Scholar
  15. 15.
    S. Vollebregt, J. Derakhshandeh, R. Ishihara, and C.I.M. Beenakker, 51st TMS Electronics Materials Conference (PA: State College, 2009).Google Scholar
  16. 16.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, and W.I. Milne, J. Appl. Phys. 90, 5308 (2001).CrossRefADSGoogle Scholar
  17. 17.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai, Science 283, 283 (1999).CrossRefGoogle Scholar
  18. 18.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).CrossRefADSGoogle Scholar
  19. 19.
    E.F. Antunes, A.O. Lobo, E.J. Corat, and V.J. Trava-Airoldi, Carbon 45, 913 (2007).CrossRefGoogle Scholar
  20. 20.
    W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, Appl. Phys. Lett. 70, 2684 (1997).CrossRefADSGoogle Scholar
  21. 21.
    Y.T. Lee, J. Park, Y.S. Choi, H. Ryu, and H.J. Lee, J. Phys. Chem. B 106, 7614 (2002).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • S. Vollebregt
    • 1
    • 3
  • J. Derakhshandeh
    • 1
  • R. Ishihara
    • 1
  • M. Y. Wu
    • 2
  • C. I. M. Beenakker
    • 1
  1. 1.Laboratory of Electronic Components, Technology and Materials (ECTM), Delft Institute of Microsystems and Nanoelectronics (DIMES)Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of TechnologyDelftThe Netherlands
  2. 2.National Centre for High Resolution Electron Microscopy, Delft Institute of Microsystems and Nanoelectronics (DIMES), Kavli Institute of Nanoscience, Faculty of Applied PhysicsDelft University of TechnologyDelftThe Netherlands
  3. 3.Delft Institute of Microsystems and Nanoelectronics (DIMES)DelftThe Netherlands

Personalised recommendations