Journal of Electronic Materials

, Volume 39, Issue 7, pp 1015–1018 | Cite as

Effective Surface Passivation of CdMnTe Materials

  • K.H. Kim
  • V. Carcelén
  • A.E. Bolotnikov
  • G.S. Camarda
  • R. Gul
  • A. Hossain
  • G. Yang
  • Y. Cui
  • R.B. James
Article

Passivation is an important process that reduces surface leakage current and its attendant noise. We treated detector-grade large-volume CdMnTe:In samples with an (NH4)-based passivant, and compared the results with untreated samples by measuring current–voltage characteristics, surface recombination velocity, Raman spectroscopy, and charge-collection mapping. The leakage current of the passivated CdMnTe (CMT) detectors decreased five to ten times, and surface recombination declined five to six times, depending on the passivation conditions applied. We satisfactorily explained these improvements in detector performance as resulting from different passivation layers that were generated by distinct chemical reactions, as determined by the pH of the passivant.

Keywords

CdMnTe CdMnTe:In passivation leakage current ammonium sulfide ammonium fluoride tellurium oxide surface recombination charge-collection efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy. Also, research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

References

  1. 1.
    A. Mycielski, A. Burger, M. Sowinska, M. Sowinska, M. Groza, A. Szadkowski, P. Wojnar, B. Witkowska, W. Kaliszek, and P. Siffert, Phys. Stat. Sol. (c) 2, 1578 (2005).CrossRefGoogle Scholar
  2. 2.
    K.H. Kim, S.H. Cho, J.H. Suh, J. Hong, and S.U. Kim, IEEE Trans. Nucl. Sci. 56, 858 (2009).CrossRefADSGoogle Scholar
  3. 3.
    Y. Nemirovsky, G. Asa, A. Ruzin, H. Gorelik, and R. Sudharsanan, J. Electron. Mater. 27, 807 (1998).CrossRefADSGoogle Scholar
  4. 4.
    G.W. Wright, R.B. James, A.C. Burger, and A. Douglas, US Patent 6524966 (2003).Google Scholar
  5. 5.
    K.H. Kim, G.S. Camarda, A.E. Bolotnikov, R.B. James, J. Hong, and S.U. Kim, J. Appl. Phys. 105, 093705 (2009).CrossRefADSGoogle Scholar
  6. 6.
    S.G. Dremlyuzhenko, Z.I. Zakharuk, I.M. Rarenko, V.M. Srtebegev, A.G. Voloshchuk, and I.M. Yurijchuk, Semicond. Phys. Quant. Electron. Optoelectron. 7, 52 (2004).Google Scholar
  7. 7.
    E. Menéndez-Proupin, G. Gutiérrez, E. Palmero, and J.L. Peña, Phys. Stat. Sol. (c) 1, S104 (2004).CrossRefGoogle Scholar
  8. 8.
    R. Hussin, N.S. Leong, and N.S. Alias, J. Fundam. Sci. 5, 17 (2009).Google Scholar
  9. 9.
    G. Yang, A.E. Bolotnikov, G.S. Camarda, Y. Cui, A. Hossain, H.W. Yao, and R.B. James, J. Electron. Mater. 38, 1563 (2009).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • K.H. Kim
    • 1
  • V. Carcelén
    • 1
    • 2
  • A.E. Bolotnikov
    • 1
  • G.S. Camarda
    • 1
  • R. Gul
    • 1
  • A. Hossain
    • 1
  • G. Yang
    • 1
  • Y. Cui
    • 1
  • R.B. James
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.University Autónoma of MadridMadridSpain

Personalised recommendations