Advertisement

Journal of Electronic Materials

, Volume 39, Issue 9, pp 1828–1831 | Cite as

Structural Phase Transitions and Thermoelectric Properties of AgPb18SbTe20 Under Compression

  • Ravhi S. Kumar
  • Mahalingam Balasubramanian
  • Matthew Jacobsen
  • Arunkumar Bommannavar
  • Mercouri Kanatzidis
  • Seiji Yoneda
  • Andrew L. Cornelius
Article

Abstract

The high-figure-of-merit thermoelectric material AgPb18SbTe20 has been investigated by in situ angular-dispersive x-ray diffraction (XRD) and x-ray absorption fine-structure (XAFS) measurements up to 30 GPa. Resistivity and thermopower were measured with Bridgman-type opposed metal anvil cells. The results show that the ambient cubic \( \left( {Fm\overline{3} m} \right) \) structure transforms to orthorhombic (Pnma) at 6.4 GPa and then to the CsCl-type \( \left( {Pm\overline{3} m} \right) \) structure at 15 GPa. The ambient cubic \( \left( {Fm\overline{3} m} \right) \) phase is found to be recoverable on releasing the pressure. The thermoelectric power is found to increase with pressure for the cubic phase. The XAFS studies performed at the Pb L 3-edge and Ag K-edge along with resistivity studies complement the XRD findings.

Keywords

AgPb18SbTe20 x-ray diffraction structural phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work, or portions of it, were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. Work at PNC/XOR supported by the US DOE-BES, NSERC (Canada), and its founding members. Funding support form ONT is acknowledged.

References

  1. 1.
    F.J. Disalvo, Science 285, 703 (1999).CrossRefPubMedGoogle Scholar
  2. 2.
    D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Baesta, C. Uher, and M.G. Kanatzidis, Science 287, 1024 (2000).CrossRefADSPubMedGoogle Scholar
  3. 3.
    B. Sales, Science 295, 1248 (2002).CrossRefPubMedGoogle Scholar
  4. 4.
    L.D. Hicks and M.S. Dresselhauss, Phys. Rev. B 47, 16631 (1993).CrossRefADSGoogle Scholar
  5. 5.
    L.D. Hicks, T.C. Harman, and M.S. Dresselhauss, Appl. Phys. Lett. 63, 3230 (1993).CrossRefADSGoogle Scholar
  6. 6.
    A. Khitun, K.L. Wang, and G. Chen, Nanotechnology 11, 327 (2000).CrossRefADSGoogle Scholar
  7. 7.
    R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefADSPubMedGoogle Scholar
  8. 8.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefADSPubMedGoogle Scholar
  9. 9.
    J. Androulakis, R. Pcionek, E. Quarez, J.H. Do, H. Kong, O. Palchik, C. Uher, J.J. D’Angeleo, J. Short, T. Hogan, and M.G. Kanatzidis, Chem. Mater. 18, 4719 (2006).CrossRefGoogle Scholar
  10. 10.
    P.C. Zhai, W.Y. Zhao, Y. Li, L.S. Liu, X.F. Tang, and Q.J. Zhang, Appl. Phys. Lett. 89, 052111 (2006).CrossRefADSGoogle Scholar
  11. 11.
    J.F. Meng, N.V. Chandrashekar, and J.V. Badding, J. Appl. Phys. 90, 2836 (2001).Google Scholar
  12. 12.
    P. Larson, Phys. Rev. B 74, 205113 (2006).CrossRefADSGoogle Scholar
  13. 13.
    N. Toda, T. Harada, and H. Sumiya, Rev. High Press. Sci. Technol. 15, 310 (2005).CrossRefGoogle Scholar
  14. 14.
    J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, and M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006).CrossRefGoogle Scholar
  15. 15.
    P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, Angew. Chem. 45, 3835 (2006).CrossRefGoogle Scholar
  16. 16.
    Y. Wang, P. Zhu, H. Jiao, H. Chen, Y. Ma, Y. Niu, Y. Li, L. Zhang, T. Zhang, C. Gao, and G. Zhou, J. Phys. D 19, 425219 (2007).Google Scholar
  17. 17.
    Y. Shen, R.S. Kumar, M. Pravica, and M.F. Nicol, Rev. Sci. Instrum. 75, 4450 (2004).CrossRefADSGoogle Scholar
  18. 18.
    H.K. Mao, J. Xu, and P.M. Bell, J. Geophys. Res. 91, 4673 (1986).CrossRefADSGoogle Scholar
  19. 19.
    X. Ke, C. Chen, J. Yang, L. Wu, J. Zhou, Q. Li, Y. Zhu, and P.R. Kent, Phys. Rev. Lett. 103, 145502 (2009).CrossRefADSPubMedGoogle Scholar
  20. 20.
    G. Rousse, S. Klotz, A.M. Saitta, J. Rodriguez-Carvajal, M.I. McMahon, B. Couzinet, and M. Mezouar, Phys. Rev. B 71, 224116 (2005).CrossRefADSGoogle Scholar
  21. 21.
    S.V. Ovsyannikov, V.V. Shchennikov, A.Y. Manakov, A.Y. Likhacheva, I.F. Berger, A.I. Ancharov, and M.A. Sheromov, Phys. Stat. Solidi (b) 244, 279 (2007).CrossRefADSGoogle Scholar
  22. 22.
    R. Guo-Zhong, J. Xiao-Peng, Z. Pin-Wen, Z. Chuan-Yi, M. Hong-An, and W. Xian-Cheng, Chin. Phys. Lett.. 22, 236 (2005).CrossRefADSGoogle Scholar
  23. 23.
    S.V. Ovsyannikov and V.V. Shchennikova, Appl. Phys. Lett. 90, 122103 (2007).CrossRefADSGoogle Scholar
  24. 24.
    Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma, and G. Zou, Phys. Rev. B 76, 155127 (2007).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Ravhi S. Kumar
    • 1
  • Mahalingam Balasubramanian
    • 2
  • Matthew Jacobsen
    • 1
  • Arunkumar Bommannavar
    • 3
  • Mercouri Kanatzidis
    • 4
  • Seiji Yoneda
    • 5
  • Andrew L. Cornelius
    • 1
  1. 1.Department of Physics and Astronomy, High Pressure Science and Engineering CenterUniversity of Nevada Las VegasLas VegasUSA
  2. 2.PNC/XOR, Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  3. 3.HPCAT and Carnegie Institution of WashingtonArgonneUSA
  4. 4.Northwestern UniversityChicagoUSA
  5. 5.Department of Electronics and Information FrontiersKanagawa UniversityKanagawaJapan

Personalised recommendations