Journal of Electronic Materials

, Volume 39, Issue 7, pp 1036–1042

Feasibility of Localized Substrate Thinning for Reduced Dislocation Density in CdTe/Si Heterostructures

  • R. N. Jacobs
  • P. J. Smith
  • J. K. Markunas
  • J. D. Benson
  • J. Pellegrino
Article
  • 63 Downloads

Abstract

HgCdTe heteroepitaxy on low-cost, large-lattice-mismatched substrates such as Si continue to be plagued by large threading dislocation densities that ultimately reduce the operability of the thermal imaging detector array. Molecular-beam epitaxy (MBE) of 10 μm- to 15 μm-thick CdTe buffer layers has played a crucial role in reducing dislocation densities to current state-of-the-art levels. Herein, we examine the possibility that growth on locally back-thinned substrates could prove advantageous in further reducing dislocation densities in the CdTe/Si heteroepitaxial system. Using defect decoration techniques, a decrease in dislocation (etch-pit) density of up to ~42% has been measured in CdTe regions where the underlying Si substrate was chemically back-thinned to ~20 μm. A theoretical understanding is proposed, where a substrate-thickness-dependent dislocation image force is a likely cause for the experimentally observed reduction in threading dislocation density. These observations raise the prospect of combining localized substrate thinning with other techniques to further reduce dislocation densities to levels sought for HgCdTe/CdTe/Si and other large-lattice-mismatched systems.

Keywords

Wafer thinning threading dislocation density mismatched heteroepitaxy silicon HgCdTe CdTe image force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Sporken, S. Sivananthan, K.K. Mahavadi, G. Monfroy, M. Boukerche, and J.P. Faurie, Appl. Phys. Lett. 55, 1879 (1989).CrossRefADSGoogle Scholar
  2. 2.
    M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, M. Groenert, L.A. Almeida, J.H. Dinan, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 35, 1417 (2006).CrossRefADSGoogle Scholar
  3. 3.
    N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).CrossRefADSGoogle Scholar
  4. 4.
    L.A. Almeida, L. Hirsch, M. Martinka, P.R. Boyd, and J.H. Dinan, J. Electron. Mater. 30, 608 (2001).CrossRefADSGoogle Scholar
  5. 5.
    S.M. Johnson, D.R. Rhiger, J.P. Rosenbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B10, 1499 (1992).Google Scholar
  6. 6.
    R.N. Jacobs, J. Markunas, J. Pellegrino, L.A. Almeida, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, and S.B. Qadri, J. Cryst. Growth 310, 2960 (2008).CrossRefADSGoogle Scholar
  7. 7.
    P. Wijewarnasuriya, Y. Chen, G. Brill, N. Dhar, D. Benson, L. Bubulac, and D. Edwall, J. Electron. Mater. (in this issue).Google Scholar
  8. 8.
    L.O. Bubulac, J.D. Benson, R. Helmer, T.D. Golding, A. Wang, L. Wang, A. Stoltz, R.N. Jacobs, and M. Jaime-Vasquez, J. Electron. Mater. (in this issue).Google Scholar
  9. 9.
    M. Jaime-Vasquez, R.N. Jacobs, J.D. Benson, A.J. Stoltz, L.A. Almeida, L.O. Bubulac, Y. Chen, and G. Brill, J. Electron. Mater. (in this issue).Google Scholar
  10. 10.
    L.O. Bubulac, J.D. Benson, A. Wang, L. Wang, R.N. Jacobs, R. Helmer, M. Jaime-Vasquez, L.A. Almeida, T.D. Golding, and A. Stoltz, J. Electron. Mater. (in this issue).Google Scholar
  11. 11.
    J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, G. Brill, Y. Chen, U. Lee, M.F. Villa, J. Peterson, S.M. Johnson, D.D. Lofgren, D. Rhiger, E.A. Patten, and P.M. Goetz. J. Electron. Mater. (in this issue).Google Scholar
  12. 12.
    Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).CrossRefADSGoogle Scholar
  13. 13.
    J.D. Benson, R.N. Jacobs, J.K. Markunas, M. Jaime- Vasquez, P.J. Smith, L.A. Almeida, M. Martinka, M.F. Vilela, and U. Lee, J. Electron. Mater. 37, 1231 (2008).CrossRefADSGoogle Scholar
  14. 14.
    R. Zhang and I. Bhat, J. Electron. Mater. 29, 760 (2000).CrossRefADSGoogle Scholar
  15. 15.
    T.D. Golding, O.W. Holland, M.J. Kim, J.H. Dinan, L.A. Almeida, J.M. Arias, J. Bajaj, H.D. Shih, and W.P. Kirk, J. Electron. Mater. 32, 882 (2003).CrossRefADSGoogle Scholar
  16. 16.
    J. Molstad, P. Boyd, J. Markunas, D.J. Smith, E. Smith, E. Gordon, and J.H. Dinan, J. Electron. Mater. 35, 1636 (2006).CrossRefADSGoogle Scholar
  17. 17.
    Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).CrossRefADSGoogle Scholar
  18. 18.
    L.B. Freund and W.D. Nix, Appl. Phys. Lett. 69, 173 (1996).CrossRefADSGoogle Scholar
  19. 19.
    UltraThin® is a registered trademark. Virginia Semiconductor Inc. owns all the rights to use the UltraThin® trademark as related to silicon wafers and chips.Google Scholar
  20. 20.
    J.P. Mcaffrey, B.T. Sullivan, J.W. Fraser, and D.L. Callahan, Micron 27, 407 (1996).CrossRefGoogle Scholar
  21. 21.
    W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Shaake, J. Electron. Mater. 24, 505 (1995).CrossRefADSGoogle Scholar
  22. 22.
    J.D. Benson, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, M. Martinka, L.O. Bubulac, M. Greonert, P. Wijewarnasuriya, G. Brill, Y. Chen, and U. Lee, J. Electron. Mater. 38, 1771 (2009).CrossRefADSGoogle Scholar
  23. 23.
    J.S. Speck, M.A. Brewer, G. Beltz, A.E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).CrossRefADSGoogle Scholar
  24. 24.
    I.V. Kurilo, V.P. Alekhin, I.O. Rudyi, S.I. Bulychev, and L.I. Osypyshin, Phys. Status Solidi A 163, 47 (1997).CrossRefADSGoogle Scholar
  25. 25.
    W.A. Brantley, J. Appl. Phys. 44, 534 (1973).CrossRefADSGoogle Scholar
  26. 26.
    J. Weertman and J.R. Weertman, Elementary Dislocation Theory (Oxford University Press, 1992), pp. 170–173.Google Scholar

Copyright information

© US ARMY RDECOM CERDEC Night Vision and Electronic Sensor Directorate. 2010

Authors and Affiliations

  • R. N. Jacobs
    • 1
  • P. J. Smith
    • 1
  • J. K. Markunas
    • 1
  • J. D. Benson
    • 1
  • J. Pellegrino
    • 1
  1. 1.U. S. Army RDECOM, CERDEC Night Vision and Electronic Sensors DirectorateFort BelvoirUSA

Personalised recommendations