Advertisement

Journal of Electronic Materials

, Volume 39, Issue 9, pp 1856–1860 | Cite as

Investigation of the Thermoelectric Properties of LiAlSi and LiAlGe

  • Joachim Barth
  • Gerhard H. Fecher
  • Markus Schwind
  • Andreea Beleanu
  • Claudia Felser
  • Andrey Shkabko
  • Anke Weidenkaff
  • Jan Hanss
  • Armin Reller
  • Martin Köhne
Article

The compounds LiAlSi and LiAlGe were synthesized and their thermoelectric properties and temperature stability were investigated. The samples were synthesized by arc melting of the constituent elements. For the determination of the structure type and the lattice parameter, x-ray powder diffraction was used. Both compounds were of the C1 b structure type. The stability of the compounds was investigated by differential thermal analysis and thermal gravimetry. The Seebeck coefficient and the electrical resistivity were determined in the temperature range from 2 K to 650 K. All compounds showed p-type behavior. The thermal conductivity was measured from 2 K to 400 K. The evaluation of the thermal conductivity yielded values as low as 2.4 W m−1 K−1 at 400 K for LiAlGe. The low values are ascribed to high mass fluctuation scattering and a possible rattling effect of the Li atoms.

Keywords

Thermoelectric materials solid-state reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.M. Tritt, Science 283, 804 (1999).CrossRefGoogle Scholar
  2. 2.
    H.J. Goldsmith, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).Google Scholar
  3. 3.
    C.B. Vining, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).Google Scholar
  4. 4.
    E.H. Zintl and G.Z. Brauer, Z. Phys. Chem. Abt. B 20, 245 (1933).Google Scholar
  5. 5.
    N. Shutoh and S. Sakurada, J. Alloys Compd. 389, 204 (2005).CrossRefGoogle Scholar
  6. 6.
    C. Uher, J. Yang, and S. Hu, Phys. Rev. B 59, 8615 (1999).CrossRefADSGoogle Scholar
  7. 7.
    L. Chaput, J. Tobola, P. Pecheur, and H. Scherrer, Phys. Rev. B 73, 045121 (2006).CrossRefADSGoogle Scholar
  8. 8.
    M. Zhou, L. Chen, C. Feng, D. Wang, and J.F Li, J. Appl. Phys. 101, 1137141 (2007).Google Scholar
  9. 9.
    M. Zhou, C. Feng, L. Chen, and X. Huang, J. Alloys Compd. 391, 194–197 (2005).CrossRefGoogle Scholar
  10. 10.
    H.J. Goldsmid, Thermoelectric Refrigeration (London: Pion Ltd., 1986).Google Scholar
  11. 11.
    U. Birkholz and G.Z. Haacke, Z. Naturforsch. 161, 5 (1962).Google Scholar
  12. 12.
    G.S. Nolas, G.A. Slack, D.T. Morelli, T.M. Tritt, and A.C. Ehrlic, J. Appl. Phys. 79, 4002 (1996).CrossRefADSGoogle Scholar
  13. 13.
    E. Müller, C. Stiewe, D.M. Rowe, and S.G.K. Williams, Thermoelectrics Handbook Macro To Nano (Boca Raton: CRC, 2006).Google Scholar
  14. 14.
    Quantum Design, Physical Property Measurement System Thermal Transport Option User’s Manual. Quantum Design, USA, San Diego, 2002.Google Scholar
  15. 15.
    L. Spina, Y.-Z. Jia, M.B. Ducourant, M. Tillard, and C. Belin, Z. Kristallogr. 218, 740 (2003).CrossRefGoogle Scholar
  16. 16.
    H. Nowotny and F. Holub, Monatsh. Chem. 91, 887 (1960).CrossRefGoogle Scholar
  17. 17.
    H.U. Schuster, H.W. Hinterkeuser, W. Schaefer, and G. Will, Acta Crystallogr. C 61, i51 (2005).CrossRefGoogle Scholar
  18. 18.
    N.E. Christensen, Phys. Rev. B 32, 6490 (1985).CrossRefADSGoogle Scholar
  19. 19.
    B. Balke, K. Kroth, G.H. Fecher, and C. Felser, J. Appl. Phys. 103, 07D115 (2008).CrossRefGoogle Scholar
  20. 20.
    W.-J. Xie, X.-F. Tang, and Q.-J. Zhang, Chin. Phys. 16, 3549 (2007).CrossRefADSGoogle Scholar
  21. 21.
    K. Kishimoto and T. Koyanagi J. Alloys Compd. 463, 89 (2008).CrossRefGoogle Scholar
  22. 22.
    H.C. Kandpal, C. Felser, and R. Seshadri, J. Phys. Appl. Phys. 39, 776 (2006).ADSGoogle Scholar
  23. 23.
    F. Casper, C. Felser, R. Seshadri, C.P. Sebastian, and R. Pöttgen, J. Phys. D Appl. Phys. 41, 35002 (2008).CrossRefGoogle Scholar
  24. 24.
    C.M. Bhandari, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).Google Scholar
  25. 25.
    E. Bockelmann and H.U. Schuster, Z. f. Naturf. Teil B Anorg. Chem. Org. Chem. 24, 1189 (1969).Google Scholar
  26. 26.
    W. Bockelmann and H.U. Schuster, Z. f. Anorg. u. Allg. Chem 410, 241 (1974).CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Joachim Barth
    • 1
  • Gerhard H. Fecher
    • 1
  • Markus Schwind
    • 1
  • Andreea Beleanu
    • 1
  • Claudia Felser
    • 1
  • Andrey Shkabko
    • 2
  • Anke Weidenkaff
    • 2
  • Jan Hanss
    • 3
  • Armin Reller
    • 3
  • Martin Köhne
    • 4
  1. 1.Institut für Anorganische und Analytische ChemieJohannes Gutenberg-UniversitätMainzGermany
  2. 2.EMPA, Swiss Federal Laboratories for Materials Testing and ResearchSolid State Chemistry and CatalysisDuebendorfSwitzerland
  3. 3.Lehrstuhl für FestkörperchemieUniversität AugsburgAugsburgGermany
  4. 4.Robert Bosch GmbHStuttgartGermany

Personalised recommendations