Advertisement

Investigation of the Thermoelectric Properties of LiAlSi and LiAlGe

The compounds LiAlSi and LiAlGe were synthesized and their thermoelectric properties and temperature stability were investigated. The samples were synthesized by arc melting of the constituent elements. For the determination of the structure type and the lattice parameter, x-ray powder diffraction was used. Both compounds were of the C1 b structure type. The stability of the compounds was investigated by differential thermal analysis and thermal gravimetry. The Seebeck coefficient and the electrical resistivity were determined in the temperature range from 2 K to 650 K. All compounds showed p-type behavior. The thermal conductivity was measured from 2 K to 400 K. The evaluation of the thermal conductivity yielded values as low as 2.4 W m−1 K−1 at 400 K for LiAlGe. The low values are ascribed to high mass fluctuation scattering and a possible rattling effect of the Li atoms.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    T.M. Tritt, Science 283, 804 (1999).

  2. 2.

    H.J. Goldsmith, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).

  3. 3.

    C.B. Vining, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).

  4. 4.

    E.H. Zintl and G.Z. Brauer, Z. Phys. Chem. Abt. B 20, 245 (1933).

  5. 5.

    N. Shutoh and S. Sakurada, J. Alloys Compd. 389, 204 (2005).

  6. 6.

    C. Uher, J. Yang, and S. Hu, Phys. Rev. B 59, 8615 (1999).

  7. 7.

    L. Chaput, J. Tobola, P. Pecheur, and H. Scherrer, Phys. Rev. B 73, 045121 (2006).

  8. 8.

    M. Zhou, L. Chen, C. Feng, D. Wang, and J.F Li, J. Appl. Phys. 101, 1137141 (2007).

  9. 9.

    M. Zhou, C. Feng, L. Chen, and X. Huang, J. Alloys Compd. 391, 194–197 (2005).

  10. 10.

    H.J. Goldsmid, Thermoelectric Refrigeration (London: Pion Ltd., 1986).

  11. 11.

    U. Birkholz and G.Z. Haacke, Z. Naturforsch. 161, 5 (1962).

  12. 12.

    G.S. Nolas, G.A. Slack, D.T. Morelli, T.M. Tritt, and A.C. Ehrlic, J. Appl. Phys. 79, 4002 (1996).

  13. 13.

    E. Müller, C. Stiewe, D.M. Rowe, and S.G.K. Williams, Thermoelectrics Handbook Macro To Nano (Boca Raton: CRC, 2006).

  14. 14.

    Quantum Design, Physical Property Measurement System Thermal Transport Option User’s Manual. Quantum Design, USA, San Diego, 2002.

  15. 15.

    L. Spina, Y.-Z. Jia, M.B. Ducourant, M. Tillard, and C. Belin, Z. Kristallogr. 218, 740 (2003).

  16. 16.

    H. Nowotny and F. Holub, Monatsh. Chem. 91, 887 (1960).

  17. 17.

    H.U. Schuster, H.W. Hinterkeuser, W. Schaefer, and G. Will, Acta Crystallogr. C 61, i51 (2005).

  18. 18.

    N.E. Christensen, Phys. Rev. B 32, 6490 (1985).

  19. 19.

    B. Balke, K. Kroth, G.H. Fecher, and C. Felser, J. Appl. Phys. 103, 07D115 (2008).

  20. 20.

    W.-J. Xie, X.-F. Tang, and Q.-J. Zhang, Chin. Phys. 16, 3549 (2007).

  21. 21.

    K. Kishimoto and T. Koyanagi J. Alloys Compd. 463, 89 (2008).

  22. 22.

    H.C. Kandpal, C. Felser, and R. Seshadri, J. Phys. Appl. Phys. 39, 776 (2006).

  23. 23.

    F. Casper, C. Felser, R. Seshadri, C.P. Sebastian, and R. Pöttgen, J. Phys. D Appl. Phys. 41, 35002 (2008).

  24. 24.

    C.M. Bhandari, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).

  25. 25.

    E. Bockelmann and H.U. Schuster, Z. f. Naturf. Teil B Anorg. Chem. Org. Chem. 24, 1189 (1969).

  26. 26.

    W. Bockelmann and H.U. Schuster, Z. f. Anorg. u. Allg. Chem 410, 241 (1974).

Download references

Author information

Correspondence to Claudia Felser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barth, J., Fecher, G.H., Schwind, M. et al. Investigation of the Thermoelectric Properties of LiAlSi and LiAlGe. Journal of Elec Materi 39, 1856–1860 (2010) doi:10.1007/s11664-010-1076-9

Download citation

Keywords

  • Thermoelectric materials
  • solid-state reactions