Journal of Electronic Materials

, Volume 39, Issue 3, pp 312–317 | Cite as

Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

  • Jir̆í Sopoušek
  • Marián Palcut
  • Erika Hodúlová
  • Jozef Janovec

The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching to room temperature. The samples were analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry (DSC). The phase equilibrium has been further investigated by thermodynamic calculations. The observed phase compositions as well as DSC signals are reasonably explained using the calculation of phase diagrams (CALPHAD) approach.


Lead-free soldering solidification CALPHAD DSC simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1994).CrossRefADSGoogle Scholar
  2. 2.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
  3. 3.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).CrossRefGoogle Scholar
  4. 4.
    S.K. Kang and A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994).CrossRefADSGoogle Scholar
  5. 5.
    D. Napp, Sampe J. 32, 59 (1996).Google Scholar
  6. 6.
    A.Z. Miric and A. Grusd, Soldering Surface Mount Technol. 10, 19 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Heart, Clean 36, 145 (2008).Google Scholar
  8. 8.
    M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A 31, 1155 (2000).CrossRefGoogle Scholar
  9. 9.
    I. Ohnuma, M. Miyashita, K. Anzai, X.J. Liu, H. Ohtani, R. Kainuma, and K. Ishida, J. Electron. Mater. 29, 1137 (2000).CrossRefADSGoogle Scholar
  10. 10.
    K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).CrossRefADSGoogle Scholar
  11. 11.
    M. Palcut, J. Sopoušek, L. Trnková, E. Hodulová, B. Szewczyková, M. Ožvold, M. Turňa, and J. Janovec, Kovove Mater. 47, 43 (2009).Google Scholar
  12. 12.
    X.J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Pstrus, J. Electron. Mater. 31, 1139 (2002).CrossRefADSGoogle Scholar
  13. 13.
    B. Sundman, B. Jansson, and J.-O. Andersson, Calphad 9, 153 (1985).CrossRefGoogle Scholar
  14. 14.
    J.-O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, and B. Sundman, Calphad 26, 273 (2002).CrossRefGoogle Scholar
  15. 15.
    A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vizdal, and A. Zemanova, JOM 59, 20 (2007).CrossRefGoogle Scholar
  16. 16.
  17. 17.
    A.T. Dinsdale, A. Watson, A. Kroupa, J. Vr̆ešt'ál, A. Zemanová, and J. Vízdal, COST Action 531—Atlas of Lead-free Soldering. COST Office 2008, ISBN 978-80-86292-28-1.Google Scholar
  18. 18.
    H.-T. Lee, C.-Y. Lee, F.-K. Lee, Y.-F. Chen, and Y.-H. Lee, J. Electron. Mater. 38, 2112 (2009).CrossRefADSGoogle Scholar
  19. 19.
    T. Heumann and O. Alpaut, J. Less-Common Metals 6, 108 (1964).CrossRefGoogle Scholar
  20. 20.
    S.F. Bartram, W.G. Moffatt, and B.W. Roberts, J. Less-Common Metals 62, 9 (1978).CrossRefGoogle Scholar
  21. 21.
    T.-M. Korhonen and J.K. Kivilahti, J. Electron. Mater. 27, 149 (1998).CrossRefADSGoogle Scholar
  22. 22.
    Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, and K. Ishida, J. Electron. Mater. 30, 1120 (2001).CrossRefADSGoogle Scholar
  23. 23.
    P.-Y. Chevalier, Thermochim. Acta 136, 45 (1988).CrossRefGoogle Scholar
  24. 24.
    A. Bolcavage, S.W. Chen, C.R. Kao, Y.A. Chang, and A.D. Roming, J. Phase Equilib. Diffusion 14, 14 (1993).CrossRefGoogle Scholar
  25. 25.
    C.R. Kao, A. Bolccwage, S.-L. Chen, S.W. Chen, Y.A. Chang, and A.D. Roming, J. Phase Equilib. Diffusion 14, 22 (1993).CrossRefGoogle Scholar
  26. 26.
    J.H. Shim, C.S. Oh, B.J. Lee, and D.N. Lee, Z. Metallkunde 87, 205 (1996).Google Scholar
  27. 27.
    H.S. Liu, X.J. Liu, Y. Cui, C.P. Wang, I. Ohnuma, R. Kainuma, Z.P. Jin, and K. Ishida, J. Phase Equilib. Diffusion 23, 409 (2002).CrossRefGoogle Scholar
  28. 28.
    X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Metall. Mater. Trans. A 35, 1641 (2004).CrossRefGoogle Scholar
  29. 29.
    X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi, J. Electron. Mater. 30, 1093 (2001).CrossRefADSGoogle Scholar
  30. 30.
    L. Snugovsky, P. Snugovsky, D.D. Perovic, and J.W. Rutter, Mater. Sci. Technol. 23, 432 (2007).CrossRefGoogle Scholar
  31. 31.
    W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.-H. Perepezko, DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing (Washington: National Institute of Standards and Technology, 2006).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Jir̆í Sopoušek
    • 1
  • Marián Palcut
    • 2
    • 4
  • Erika Hodúlová
    • 3
  • Jozef Janovec
    • 2
  1. 1.Institute of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Materials Science, Faculty of Materials Science and TechnologySlovak University of TechnologyTrnavaSlovakia
  3. 3.Institute of Production Technologies, Faculty of Materials Science and TechnologySlovak University of TechnologyTrnavaSlovakia
  4. 4.Division of Fuel Cells and Solid State Chemistry, Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations