Journal of Electronic Materials

, Volume 39, Issue 9, pp 1861–1868 | Cite as

Thermoelectric Properties as a Function of Electronic Band Structure and Microstructure of Textured Materials

  • A. Jacquot
  • N. Farag
  • M. Jaegle
  • M. Bobeth
  • J. Schmidt
  • D. Ebling
  • H. Böttner


A tool has been developed at Fraunhofer-IPM to calculate the transport properties of thermoelectric material by using its band structure described in terms of effective masses and the location of the ellipsoids in reciprocal space. The calculated transport properties are compared with experimental data measured on bismuth telluride, antimony telluride, and bismuth antimony telluride. Polycrystalline specimens have been prepared by spark plasma sintering (Fraunhofer-IFAM). Electron backscattering diffraction analysis of sample cross-sections yields the frequency distribution of grain orientations. This texture information permits the generation of appropriate finite-element models of the polycrystalline microstructure (TU Dresden). By means of the commercial code COMSOL, which allows anisotropic thermoelectric properties to be taken into account, the effective electrical and thermal conductivities as well as the Seebeck coefficient both parallel and perpendicular to the pressing direction have been calculated.

Key words

Thermoelectric electronic band structure textured materials texture Seebeck electrical conductivity thermal conductivity lattice thermal conductivity bismuth telluride antimony telluride bismuth antimony telluride effective mass inertial effective mass density of states Boltzmann COMSOL finite-element method transport properties invariance method Fermi level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Marian Böhling, who worked at the Institut für Werkstoffwissenschaft, Technische Universität Dresden, for performing the EBSD analysis. This work was supported by the German Federal Ministry of Education and Research (BMBF) within the joint project VEKTRA.


  1. 1.
    H.J. Goldsmidt and M. Situmorang, Proceedings of the 8th International Conference on Thermoelectrics, Nancy, France (1989), p. 1.Google Scholar
  2. 2.
    J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).CrossRefGoogle Scholar
  3. 3.
    L. Chaput, Calculation of the Transport Properties of Thermoelectric Materials (France: PhD Polytechnic Institute of Lorraine, 2006).Google Scholar
  4. 4.
    T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofol, Phys. Rev. B 68, 125210 (2003).CrossRefADSGoogle Scholar
  5. 5.
    S.K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter 9, 461 (1997).CrossRefADSGoogle Scholar
  6. 6.
    L. Chaput, P. Pécheur, and H. Scherrer, Phys. Rev. B 75, 045116 (2007).CrossRefADSGoogle Scholar
  7. 7.
    C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).Google Scholar
  8. 8.
    B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).CrossRefADSGoogle Scholar
  9. 9.
    Landolt-Börnstein, Group III Condensed Matter, ed. H. Fischer (Berlin, Heidelberg: Springer, 1988), ISSN 1615-1925.Google Scholar
  10. 10.
    M. Stordeur, M. Stölzer, H. Sobotta, and V. Riedle, Phys. Stat. Solidi (b) 150, 165 (1988).Google Scholar
  11. 11.
    J.R. Drabble and R. Wolfe, Proc. Phys. Soc. B 69, 1101 (1956).CrossRefADSGoogle Scholar
  12. 12.
    A. Jacquot, Proceedings of the European Conference on Thermoelectrics, Paris, France (2008), p. 1.Google Scholar
  13. 13.
    J.H. Dennis, Technical Report 377 (Cambridge: Research Laboratory of Electronics, Massachusetts Institute of Technology, January 15, 1961), 52 p.Google Scholar
  14. 14.
    V. Randle and O. Engler, Texture Analysis––Macrotexture, Microtexture & Orientation Mapping (Boca Raton, FL: CRC, 2009), 480 p.Google Scholar
  15. 15.
    D.G. Ebling, A. Jacquot, J. König, H. Böttner, J. Schmidt, and P. Spies, Proceedings of the 26th International Conference on Thermoelectrics, Korea, O-D-6 (2007).Google Scholar
  16. 16.
    D.G. Ebling, M. Jaegle, M. Bartel, A. Jacquot, and H. Böttner, J. Electron. Mater. 38, 1456 (2009). doi: 10.1007/s11664-009-0825-0.CrossRefADSGoogle Scholar
  17. 17.
    E.E. Antonova and D.C. Looman, Proceedings of the 24th International Conference on Thermoelectrics, Clemson, USA (2005), p. 215.Google Scholar
  18. 18.
    H. Scherrer and S. Scherrer, Handbook of Thermoelectrics (Boca Raton, FL: CRC, 1995), Chap. 19.Google Scholar
  19. 19.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefADSPubMedGoogle Scholar
  20. 20.
    A. Jacquot, J. König, and H. Böttner, Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria (2006), p. 184.Google Scholar
  21. 21.
    G.W. Milton, The Theory of Composites (Cambridge: Cambridge University Press, 2002), Chap. 10.Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • A. Jacquot
    • 1
  • N. Farag
    • 2
  • M. Jaegle
    • 1
  • M. Bobeth
    • 2
  • J. Schmidt
    • 3
  • D. Ebling
    • 1
  • H. Böttner
    • 1
  1. 1.Department of Thermoelectric SystemsFraunhofer-Institut für Physikalische Messtechnik IPMFreiburgGermany
  2. 2.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  3. 3.Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Institutsteil DresdenDresdenGermany

Personalised recommendations