Journal of Electronic Materials

, Volume 39, Issue 5, pp 517–525

Spatial Localization of Carrier Traps in 4H-SiC MOSFET Devices Using Thermally Stimulated Current

  • Marko J. Tadjer
  • Robert E. Stahlbush
  • Karl D. Hobart
  • Patrick J. McMarr
  • Hap L. Hughes
  • Eugene A. Imhoff
  • Fritz J. Kub
  • Sarah K. Haney
  • Anant Agarwal
Open Access


Carrier traps in 4H-SiC metal–oxide–semiconductor (MOS) capacitor and transistor devices were studied using the thermally stimulated current (TSC) method. TSC spectra from p-type MOS capacitors and n-channel MOS field-effect transistors (MOSFETs) indicated the presence of oxide traps with peak emission around 55 K. An additional peak near 80 K was observed due to acceptor activation and hole traps near the interface. The physical location of the traps in the devices was deduced using a localized electric field approach. The density of hole traps contributing to the 80-K peak was separated from the acceptor trap density using a gamma-ray irradiation method. As a result, hole trap density of Nt,hole = 2.08 × 1015 cm−3 at 2 MV/cm gate field and Nt,hole = 2.5 × 1016 cm−3 at 4.5 MV/cm gate field was extracted from the 80-K TSC spectra. Measurements of the source-body n+p junction suggested the presence of implantation damage in the space-charge region, as well as defect states near the n+ SiC substrate.


Thermally stimulated current hole traps 4H-SiC MOSCAP 4H-SiC MOSFET threshold voltage implantation damage acceptor activation 


  1. 1.
    K.H. Nicholas and J. Woods, Br. J. Appl. Phys. 15, 783 (1964).CrossRefADSGoogle Scholar
  2. 2.
    M.G. Buehler and W.E. Phillips, Solid-State Electron. 19, 777 (1976).CrossRefADSGoogle Scholar
  3. 3.
    D.M. Fleetwood and N.S. Saks, J. Appl. Phys. 79, 1583 (1996).CrossRefADSGoogle Scholar
  4. 4.
    D.M. Fleetwood, R.A. Reber Jr., and P.S. Winokur, IEEE Trans. Nucl. Sci. 38, 1066 (1991).CrossRefADSGoogle Scholar
  5. 5.
    D.M. Fleetwood, R.A. Reber Jr., L.C. Riewe, and P.S. Winokur, Microelectron. Reliab. 39, 1323 (1999).CrossRefGoogle Scholar
  6. 6.
    D.M. Fleetwood, H.D. Xiong, Z.-Y. Lu, C.J. Nicklaw, J.A. Felix, R.D. Schrimpf, and S.T. Pantelides, IEEE Trans. Nucl. Sci. 49, 2674 (2002).CrossRefADSGoogle Scholar
  7. 7.
    S.L. Miller, D.M. Fleetwood, and P.J. McWhorter, Phys. Rev. Lett. 69, 820 (1992).CrossRefPubMedADSGoogle Scholar
  8. 8.
    J.G. Simmons and G.W. Taylor, Solid State Electron. 17, 125 (1974).CrossRefADSGoogle Scholar
  9. 9.
    R.R. Haering and E.N. Adams, Phys. Rev. 117, 451 (1960).CrossRefADSGoogle Scholar
  10. 10.
    A. Agarwal, H. Fatima, S. Haney, and S.-H. Ryu, IEEE Electron. Dev. Lett. 28, 587 (2007).CrossRefADSGoogle Scholar
  11. 11.
    V.S. Lysenko, I.P. Osiyuk, T.E. Rudenko, I.P. Tyagulski, E.Ö. SveinbjÖrnsson, and H.Ö. Ólafsson, Mater. Sci. Forum 353–356, 479 (2001).CrossRefGoogle Scholar
  12. 12.
    H.Ö. Ólafsson, E.Ö. SveinbjÖrnsson, T.E. Rudenko, I.P. Tyagulski, I.P. Osiyuk, and V.S. Lysenko, Appl. Phys. Lett. 79, 4034 (2001).CrossRefADSGoogle Scholar
  13. 13.
    T.E. Rudenko, H.Ö. Ólafsson, E.Ö. SveinbjÖrnsson, I.P. Osiyuk, and I.P. Tyagulski, Microelectron. Eng. 72, 213 (2004).CrossRefGoogle Scholar
  14. 14.
    T.E. Rudenko, I.N. Osiyuk, I.P. Tyagulski, H.Ö. Ólafsson, and E.Ö. SveinbjÖrnsson, Solid-State Electron. 49, 545 (2005).CrossRefADSGoogle Scholar
  15. 15.
    J.M. Bluet, J. Pernot, J. Camassel, S. Contreras, J.L. Robert, J.F. Michaud, and T. Billon, J. Appl. Phys. 88, 1971 (2000).CrossRefADSGoogle Scholar
  16. 16.
    M. Ikeda, H. Matsunami, and T. Tanaka, Phys. Rev. B 22, 2842 (1980).CrossRefADSGoogle Scholar
  17. 17.
    T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk, and M. Maier, Phys. Status Solidi A 162, 277 (1997).CrossRefADSGoogle Scholar
  18. 18.
    Z.-Q. Fang, B. Claflin, D.C. Look, L. Polenta, and W.C. Mitchell, J. Electron. Mater. 34, 336 (2005).CrossRefADSGoogle Scholar
  19. 19.
    S. Haney and A. Agarwal, J. Electron. Mater. 37, 666 (2008).CrossRefADSGoogle Scholar
  20. 20.
    Handbook Series on Semiconductor Parameters, ed. M. Levinstein, S. Rumyantsev, and M. Shur (London: World Scientific, 1996). See also
  21. 21.
    F. Allerstam (Ph.D. dissertation, Chalmers University of Technology, Göteborg, Sweden, 2008).Google Scholar
  22. 22.
    N.S. Saks, A.K. Agarwal, S.-H. Ryu, and J.W. Palmour, J. Appl. Phys. 90, 2796 (2001).CrossRefADSGoogle Scholar
  23. 23.
    R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Processes. International Series on the Science of the Solid State, Vol. 15 (New York: Pergamon Press, 1981), p. 75.Google Scholar
  24. 24.
    K. Danno, D. Nakamura, and T. Kimoto, Appl. Phys. Lett. 90, 202108 (2007).CrossRefADSGoogle Scholar
  25. 25.
    J. Rozen, S. Dhar, S.K. Dixit, V.V. Afanas’ev, F.O. Roberts, H.L. Dang, S. Wang, S.T. Pantelides, J.R. Williams, and L.C. Feldman, J. Appl. Phys. 103, 124513 (2008).CrossRefADSGoogle Scholar
  26. 26.
    M.J. Tadjer, K.D. Hobart, E.A. Imhoff, and F.J. Kub, Mater. Sci. Forum 600–603, 1147 (2009).CrossRefGoogle Scholar
  27. 27.
    T. Okayama, S.D. Arthur, J.L. Garrett, and M.V. Rao, Solid-State Electron. 52, 164 (2008).CrossRefADSGoogle Scholar
  28. 28.
    A.J. Lelis, D. Haberstat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman, Mater. Res. Soc. Symp. Proc. 1069, 1069-D11-04 (2008).Google Scholar
  29. 29.
    V. Tilak, K. Matocha, and G. Dunne, IEEE Trans. Electron. Device 54, 2823 (2007).Google Scholar
  30. 30.
    D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 1998), p. 310.Google Scholar

Copyright information

© United States Naval Research Laboratory 2010

Authors and Affiliations

  • Marko J. Tadjer
    • 1
  • Robert E. Stahlbush
    • 2
  • Karl D. Hobart
    • 2
  • Patrick J. McMarr
    • 2
  • Hap L. Hughes
    • 2
  • Eugene A. Imhoff
    • 2
  • Fritz J. Kub
    • 2
  • Sarah K. Haney
    • 3
  • Anant Agarwal
    • 3
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Naval Research LaboratoryWashingtonUSA
  3. 3.Cree, Inc.DurhamUSA

Personalised recommendations