Journal of Electronic Materials

, Volume 39, Issue 9, pp 1909–1913 | Cite as

Effect of Processing Route on the Microstructure and Thermoelectric Properties of Bismuth Telluride-Based Alloys

  • N. GothardEmail author
  • G. Wilks
  • T. M. Tritt
  • J. E. Spowart

Considerable work has been done to engineer materials with high efficiencies of thermoelectric heat-to-electricity conversion and the mechanical strength necessary to withstand the demands of practical applications. In particular, in the bismuth telluride system, extrusion pressing has been found to be effective for improving the mechanical strength of alloys via grain refinement. We review some of the literature relating to processing approaches for the bismuth telluride system. We also present preliminary data for a series of samples obtained by incorporating C60 via ball milling and spark plasma sintering into a matrix consisting of a (Bi,Sb)2Te3 alloy, with a focus on the texture of the composites and its relation to thermoelectric transport properties, in comparison to the parent material. The viability of improving the thermoelectric performance of bismuth telluride alloys by the insertion of nanoparticles into a composite is also considered.


Thermoelectric composite bismuth telluride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge support from the Air Force Research Laboratory, Materials and Manufacturing Directorate, through a collaborative research and development contract with Universal Technologies Corporation (UTC-Air Force/0978-205-2006541). Special thanks are extended to Dr. Jeff Sharp and Marlow Industries for supplying the bismuth telluride source material. We also acknowledge Dr. Ayman Salem and Mr. Fred Meisenkothen, for their valuable assistance with the OIM characterization, and Mr. Andrew Blankemeier, for assistance with the SPS.


  1. 1.
    J.R. Drabble and C.H.L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).CrossRefADSGoogle Scholar
  2. 2.
    F.D. Rosi, B. Abeles, and R.V. Jensen, J. Phys. Chem. Solids 10, 191 (1959).CrossRefADSGoogle Scholar
  3. 3.
    M.H. Francombe, Br. J. Appl. Phys. 9, 415 (1958).CrossRefADSGoogle Scholar
  4. 4.
    H.J. Goldsmid, Proc. Phys. Soc. 71, 633 (1958).CrossRefGoogle Scholar
  5. 5.
    C.B. Satterthwaite and R.W. Ure Jr., Phys. Rev. 108, 1164 (1957).CrossRefADSGoogle Scholar
  6. 6.
    J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).CrossRefADSGoogle Scholar
  7. 7.
    T. Caillat, M. Carle, P. Pierrat, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 53, 1121 (1992).CrossRefADSGoogle Scholar
  8. 8.
    J.M. Schultz, J.P. McHugh, and W.A. Tiller, J. Appl. Phys. 30, 2443 (1962).CrossRefADSGoogle Scholar
  9. 9.
    V.M. Segal, Mater. Sci. Eng., A 271, 322 (1999).CrossRefGoogle Scholar
  10. 10.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Landgon, Acta Mater. 43, 3317 (1998).CrossRefGoogle Scholar
  11. 11.
    Z.C. Chen, K. Suzuki, S. Miura, K. Nishimura, and K. Ikeda, Mater. Sci. Eng., A 500, 70 (2009).CrossRefGoogle Scholar
  12. 12.
    R. Pelletier, S. Turenne, A. Moreau, D. Vasilevskiy, and R.A. Masut, Proceedings of the 25th International Conference on Thermoelectrics, 49 (2007).Google Scholar
  13. 13.
    S.J. Hong and B.S. Chun, Mater. Res. Bull. 38, 599 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Miura, Y. Sato, K. Fukuda, K. Nishimura, and K. Ikeda, Mater. Sci. Eng., A 277, 244 (2000).CrossRefGoogle Scholar
  15. 15.
    J. Yang, R. Chen, X. Fan, W. Zhu, S. Bao, and X. Duan, J. Alloys Compd. 429, 156 (2007).CrossRefGoogle Scholar
  16. 16.
    J.M. Simard, D. Vasilevskiy, F. Belanger, J. L’Ecuyer, and S. Turenne, Proceedings of the 20th International Conference on Thermoelectrics, 20 (2001).Google Scholar
  17. 17.
    D. Vasilevskiy, J.M. Simard, F. Belanger, F. Bernier, S. Turenne, and J. L’Ecuyer, Proceedings of the 21st International Conference on Thermoelectrics , 21 (2002).Google Scholar
  18. 18.
    J. Seo, D. Cho, K. Park, and C. Lee, Mater. Res. Bull. 35, 2157 (2000).CrossRefGoogle Scholar
  19. 19.
    X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, and K. Li, J. Phys. D: Appl. Phys. 40, 5727 (2007).CrossRefADSGoogle Scholar
  20. 20.
    J.T. Im, K.T. Hartwig, and J. Sharp, Acta Mater. 52, 49 (2004).CrossRefGoogle Scholar
  21. 21.
    S.S. Kim, S. Yamamoto, and T. Aizawa, J. Alloys Compd. 375, 107 (2004).CrossRefGoogle Scholar
  22. 22.
    X.A. Fan, J.Y. Yang, R.G. Chen, W. Zhu, and S.Q. Bao, Mater. Sci. Eng., A 438, 190 (2006).CrossRefGoogle Scholar
  23. 23.
    X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan, J. Phys. D: Appl. Phys. 39, 740 (2006).CrossRefADSGoogle Scholar
  24. 24.
    X.A. Fan, J.Y. Yang, W. Zhu, H.S. Yun, R.G. Chen, S.Q. Bao, and X.K. Duan, J. Alloys Compd. 420, 256 (2006).CrossRefGoogle Scholar
  25. 25.
    J. Seo, K. Park, D. Lee, and C. Lee, Scr. Mater. 38, 477 (1998).CrossRefGoogle Scholar
  26. 26.
    I.J. Ohsugi, T. Kojima, and I.A. Nishida, J. Appl. Phys. 68, 5692 (1990).CrossRefADSGoogle Scholar
  27. 27.
    I.J. Ohsugi, T. Kojima, M. Sakata, M. Yamanashi, and I.A. Nishida, J. Appl. Phys. 76, 2235 (1994).CrossRefADSGoogle Scholar
  28. 28.
    N. Gothard, X. Ji, J. He, and T.M. Tritt, J. Appl. Phys. 103, 054314 (2008).CrossRefADSGoogle Scholar
  29. 29.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).CrossRefADSPubMedGoogle Scholar
  30. 30.
    Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett. 8, 2580 (2008).CrossRefADSPubMedGoogle Scholar
  31. 31.
    N. Gothard, J.E. Spowart, and T.M. Tritt, Phys. Status Solidi A (in press).Google Scholar
  32. 32.
    B.A. Cook, J.L. Harringa, and S. Loughin, Mater. Sci. Eng., B 41, 280 (1996).CrossRefGoogle Scholar
  33. 33.
    G.A. Slack and M.A. Hussain, J. Appl. Phys. 70, 2694 (1991).CrossRefADSGoogle Scholar
  34. 34.
    X. Shi, L. Chen, J. Yang, and G.P. Meisner, Appl. Phys. Lett. 84, 2301 (2004).CrossRefADSGoogle Scholar
  35. 35.
    T. Itoh, K. Ishikawa, and A. Okada, J. Mater. Res. 22, 249 (2007).CrossRefADSGoogle Scholar
  36. 36.
    X. Shi, L.D. Chen, S.Q. Bai, X.Y. Huang, X.Y. Zhao, Q. Yao, and C. Uher, J. Appl. Phys. 102, 103709 (2007).CrossRefADSGoogle Scholar
  37. 37.
    A.L. Pope, R.T. Littleton IV, and T.M. Tritt, Rev. Sci. Instrum. 72, 3129 (2001).CrossRefADSGoogle Scholar
  38. 38.
    A.L. Pope, B. Zawilski, and T.M. Tritt, Cryogenics 41, 725 (2001).CrossRefADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • N. Gothard
    • 1
    Email author
  • G. Wilks
    • 1
  • T. M. Tritt
    • 2
  • J. E. Spowart
    • 1
  1. 1.Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force BaseDaytonUSA
  2. 2.Department of Physics and AstronomyClemson UniversityClemsonUSA

Personalised recommendations