Journal of Electronic Materials

, Volume 39, Issue 9, pp 1950–1956 | Cite as

Microchips for the Investigation of Thermal and Electrical Properties of Individual Nanowires

  • F. Völklein
  • H. Reith
  • M. C. Schmitt
  • M. Huth
  • M. Rauber
  • R. Neumann

This paper focuses on the determination of thermal and electrical properties of individual thermoelectric nanowires, primarily bismuth and bismuth compound nanowires, as functions of their crystallinity, diameter, and composition. For measurements of the Seebeck coefficient and the electrical and thermal conductivity, specially designed microchips have been developed and employed. Finite-element simulations demonstrate that the temperature profiles of the microchips provide suitable temperature gradients for Seebeck-effect measurements and heat-sink conditions for thermal conductivity investigations. First measurements of thermal conductivity of metallic nanowires and of Seebeck coefficients of granular nanowires prepared by focused electron-beam-induced deposition are presented. Some of these results are discussed in the framework of finite-size-effect theory.


Seebeck coefficient thermoelectric properties transport coefficients thermal conductivity electrical conductivity nanowires bismuth FEBID Lorenz number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Dresselhaus, Y.M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, G. Samsonidze, and G. Dresselhaus, Mater. Sci. Eng. C 23, 129 (2003).CrossRefGoogle Scholar
  2. 2.
    T.W. Cornelius, M.E. Toimil-Molares, R. Neumann, and S. Karim, J. Appl. Phys. 100, 114307 (2006).CrossRefADSGoogle Scholar
  3. 3.
    M.E. Toimil Molares, E.M. Höhberger, Ch. Schaeflein, R.H. Blick, R. Neumann, and C. Trautmann, Appl. Phys. Lett. 82, 2139 (2003).CrossRefADSGoogle Scholar
  4. 4.
    K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1937).CrossRefGoogle Scholar
  5. 5.
    A.F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).CrossRefADSGoogle Scholar
  6. 6.
    E.H. Sondheimer, Adv. Phys. 1, 1 (1952).CrossRefADSGoogle Scholar
  7. 7.
    Y.-M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).CrossRefADSGoogle Scholar
  8. 8.
    J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 (2001).CrossRefADSGoogle Scholar
  9. 9.
    M.S. Dresselhaus and J.P. Heremans, Thermoelectric Handbook––Macro to Nano, chap. 39. ed. D.M. Rowe (Boca Raton: Taylor & Francis, 2006).Google Scholar
  10. 10.
    L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transf. 125, 881 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Boukai, K. Xu, and J.R. Heath, Adv. Mater. 18, 864 (2006).CrossRefGoogle Scholar
  12. 12.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).CrossRefADSPubMedGoogle Scholar
  13. 13.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefADSPubMedGoogle Scholar
  14. 14.
    T.W. Cornelius, J. Brötz, N. Chtanko, D. Dobrev, G. Miehe, R. Neumann, and M.E. Toimil Molares, Nanotechnology 16, S246 (2005).CrossRefADSGoogle Scholar
  15. 15.
    M.E. Toimil Molares, D. Dobrev, I.U. Schuchert, J. Vetter, and R. Neumann, Adv. Mater. 13, 62 (2001).CrossRefGoogle Scholar
  16. 16.
    S. Karim, M.E. Toimil-Molares, F. Maurer, G. Miehe, W. Ensinger, J. Liu, T.W. Cornelius, and R. Neumann, Appl. Phys. A 84, 403 (2006).CrossRefADSGoogle Scholar
  17. 17.
    M. Huth, D. Klingenberger, Ch. Grimm, F. Porrati, and R. Sachser, New J. Phys. 11, 033032 (2009).CrossRefADSGoogle Scholar
  18. 18.
    F. Porrati, R. Sachser, and M. Huth, Nanotechnology 20, 195301 (2009).CrossRefADSPubMedGoogle Scholar
  19. 19.
    I. Utke, P. Hoffmann, and J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008).CrossRefGoogle Scholar
  20. 20.
    C.R. Tellier, L. Ouarbya, and A.J. Tosser, J. Mater. Sci. 16, 2287 (1981).CrossRefADSGoogle Scholar
  21. 21.
    S.B. Cronin, Y.-M. Lin, O. Rabin, M.R. Black, J.Y. Ying, M.S. Dresselhaus, P.L. Gai, J.-P. Minet, and J.-P. Issi, Nanotechnology 13, 653 (2002).CrossRefADSGoogle Scholar
  22. 22.
    N. Garcia, Y.H. Kao, and M. Strongin, Phys. Rev. B 5, 2029 (1972).CrossRefADSGoogle Scholar
  23. 23.
    Y.-M. Lin, S. Cronin, J.Y. Ying, M.S. Dresselhaus, and J. Heremans, Appl. Phys. Lett. 76, 3944 (2000).CrossRefADSGoogle Scholar
  24. 24.
    X.F. Wang, J. Zhang, H.Z. Shi, Y.W. Wang, G.W. Meng, X.S. Peng, L.D. Zhang, and J. Fang, J. Appl. Phys. 89, 3847 (2001).CrossRefADSGoogle Scholar
  25. 25.
    F. Völklein, M. Schmitt, T.W. Cornelius, O. Picht, S. Müller, and R. Neumann, J. Electron. Mater. 38, 1109 (2009).CrossRefADSGoogle Scholar
  26. 26.
    F. Völklein, H. Reith, T.W. Cornelius, M. Rauber, and R. Neumann, Nanotechnology 20, 325706 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    F. Völklein and E. Kessler, Thin Solid Films 142, 169 (1986).CrossRefGoogle Scholar
  28. 28.
    R.P. Huebener, Phys. Rev. 140, A1834 (1965).CrossRefADSGoogle Scholar
  29. 29.
    C.R. Tellier, C.R. Pichard, and A.J. Tosser, J. Phys. F: Met. Phys 9, 2377 (1979).CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • F. Völklein
    • 1
  • H. Reith
    • 1
    • 2
  • M. C. Schmitt
    • 1
    • 2
  • M. Huth
    • 2
  • M. Rauber
    • 3
  • R. Neumann
    • 3
  1. 1.Institut für Mikrotechnologien (IMtech), Hochschule RheinMainRüsselsheimGermany
  2. 2.Physikalisches Institut, Goethe-UniversitätFrankfurt am MainGermany
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations