Journal of Electronic Materials

, Volume 39, Issue 9, pp 1960–1965 | Cite as

Thermoelectric Properties of a 593-nm Individual Bismuth Nanowire Prepared Using a Quartz Template

  • Daiki Nakamura
  • Masayuki Murata
  • Yasuhiro Hasegawa
  • Takashi Komine
  • Daisuke Uematsu
  • Shinichiro Nakamura
  • Takashi Taguchi
Article

An individual bismuth nanowire sample, 593 nm in diameter and 1.64 mm in length, has been successfully grown using a quartz template. The resistivity and the Seebeck coefficient of the nanowire at 300 K were 1.35 μΩ m and −59 μV/K, respectively, similar to those of a bismuth bulk sample. The temperature dependence of the resistivity was found to decrease with temperature from 300 K to 175 K and then increase with further temperature reduction below 175 K. The absolute value of the Seebeck coefficient decreased with temperature from 300 K to 90 K, and the sign of the Seebeck coefficient changed from negative to positive near 90 K. This result indicated that there was a small amount of contamination in the bismuth. The carrier density was estimated from the resistivity and Seebeck coefficient on the basis of limitation of the mean free path and a two-carrier model, and the observed temperature dependences are discussed.

Keywords

Individual bismuth nanowire quartz template Seebeck coefficient resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported in part by a Grant-in-Aid for the Encouragement of Young Scientists from the Japan Society for the Promotion of Science, by the Murata Science Foundation and Research for Promoting Technological Seeds of Japan Science and Technology Agency. This work was performed under the auspices of the National Institute for Fusion Science (NIFS) Collaborative Research (Grant No. NIFS08KYBI007) and NINS’s Creating Innovative Research Fields Project (Grant No. NIFS08KEIN0091).

References

  1. 1.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefADSGoogle Scholar
  2. 2.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).CrossRefADSPubMedGoogle Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefADSPubMedGoogle Scholar
  4. 4.
    C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).CrossRefADSGoogle Scholar
  5. 5.
    K. Hong, F.Y. Yang, K. Liu, D.H. Reich, P.C. Searson, C.L. Chien, F.F. Balakirev, and G.S. Boebinger, J. Appl. Phys. 85, 6184 (1999).CrossRefADSGoogle Scholar
  6. 6.
    X.F. Wang, J. Zhang, H.Z. Shi, Y.W. Wang, G.W. Meng, X.S. Peng, L.D. Zhang, and J. Fang, J. Appl. Phys. 89, 3847 (2001).CrossRefADSGoogle Scholar
  7. 7.
    J. Heremans, C.M. Thrush, Y.M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, and J.F. Mansfield, Phys. Rev. B 61, 2921 (2000).CrossRefADSGoogle Scholar
  8. 8.
    T.W. Cornelius, M.E. Toimil-Molares, R. Neumann, and S. Karim, J. Appl. Phys. 100, 114307 (2006).CrossRefADSGoogle Scholar
  9. 9.
    A. Nikolaeva, T.E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).CrossRefADSGoogle Scholar
  10. 10.
    Y. Hasegawa, Y. Ishikawa, T. Komine, T.E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).CrossRefADSGoogle Scholar
  11. 11.
    Y. Hasegawa, Y. Ishikawa, H. Morita, T. Komine, H. Shirai, and H. Nakamura, J. Appl. Phys. 97, 083907 (2005).CrossRefADSGoogle Scholar
  12. 12.
    Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).CrossRefADSGoogle Scholar
  13. 13.
    Y. Hasegawa, H. Nakano, H. Morita, T. Komine, H. Okumura, and H. Nakamura, J. Appl. Phys. 102, 073701 (2007).CrossRefADSGoogle Scholar
  14. 14.
    H. Iwasaki, H. Morita, and Y. Hasegawa, Jpn. J. Appl. Phys. 47, 3576 (2008).CrossRefADSGoogle Scholar
  15. 15.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 38, 944 (2009).CrossRefADSGoogle Scholar
  16. 16.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Appl. Phys. 105, 103715 (2009).CrossRefADSGoogle Scholar
  17. 17.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).CrossRefADSGoogle Scholar
  18. 18.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefADSGoogle Scholar
  19. 19.
    Y. Hasegawa, M. Murata, D. Nakamura, and T. Komine, J. Appl. Phys. 106, 063703 (2009).CrossRefADSGoogle Scholar
  20. 20.
    Y. Hasegawa, Y. Ishikawa, H. Shirai, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, Rev. Sci. Instrum. 76, 113902 (2005).CrossRefADSGoogle Scholar
  21. 21.
    T. Teramoto, T. Komine, S. Yamamoto, M. Kuraishi, R. Sugita, Y. Hasegawa, and H. Nakamura, J. Appl. Phys. 104, 053714 (2008).CrossRefADSGoogle Scholar
  22. 22.
    Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, and H. Shirai, Jpn. J. Appl. Phys., Part 1 43, 35 (2004).CrossRefGoogle Scholar
  23. 23.
    J. Heremans and O.P. Hansen, J. Phys. C Solid State 12, 3483 (1979).CrossRefADSGoogle Scholar
  24. 24.
    R.T. Isaacson and G.A. Williams, Phys. Rev. 185, 682 (1969).CrossRefADSGoogle Scholar
  25. 25.
    R. Hartman, Phys. Rev. 181, 1070 (1969).CrossRefADSGoogle Scholar
  26. 26.
    J.P. Michenaud and J.P. Issi, J. Phys. C Solid State 5, 3061 (1972).CrossRefADSGoogle Scholar
  27. 27.
    G.A. Saunders and Z. Sümengen, P. Roy. Soc. Lond. A Mat. 329, 453 (1972).CrossRefADSGoogle Scholar
  28. 28.
    Y. Hasegawa, Y. Ishikawa, T. Saso, H. Shirai, H. Morita, T. Komine, and H. Nakamura, Physica B 382, 140 (2006).CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Daiki Nakamura
    • 1
  • Masayuki Murata
    • 1
  • Yasuhiro Hasegawa
    • 1
  • Takashi Komine
    • 2
  • Daisuke Uematsu
    • 3
  • Shinichiro Nakamura
    • 3
  • Takashi Taguchi
    • 3
  1. 1.Saitama UniversitySaitamaJapan
  2. 2.Ibaraki UniversityHitachiJapan
  3. 3.DENSO CorporationNisshinJapan

Personalised recommendations