Journal of Electronic Materials

, Volume 39, Issue 9, pp 1902–1908 | Cite as

Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model

  • Neophytos Neophytou
  • Martin Wagner
  • Hans Kosina
  • Siegfried Selberherr
Article

Abstract

Low-dimensional materials provide the possibility of improved thermoelectric performance due to the additional length scale degree of freedom for engineering their electronic and thermal properties. As a result of suppressed phonon conduction, large improvements in the thermoelectric figure of merit, ZT, have recently been reported in nanostructures, compared to the raw materials. In addition, low dimensionality can improve a device’s power factor, offering an additional enhancement in ZT. In this work the atomistic sp3d5s* spin-orbit-coupled tight-binding model is used to calculate the electronic structure of silicon nanowires (NWs). The Landauer formalism is applied to calculate an upper limit for the electrical conductivity, the Seebeck coefficient, and the power factor. We examine n-type and p-type nanowires with diameters from 3 nm to 12 nm, in [100], [110], and [111] transport orientations, at different doping concentrations. Using experimental values for the lattice thermal conductivity in nanowires, an upper limit for ZT is computed. We find that at room temperature, scaling the diameter below 7 nm can at most double the power factor and enhance ZT. In some cases, however, scaling does not enhance the performance at all. Orientations, geometries, and subband engineering techniques for optimized designs are discussed.

Keywords

Thermoelectric conductivity tight binding atomistic sp3d5s* Landauer Seebeck coefficient silicon nanowire ZT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by the European Science Foundation EUROCORES Programme FoNE-DEWINT.

References

  1. 1.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefADSPubMedGoogle Scholar
  2. 2.
    A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).CrossRefADSPubMedGoogle Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.O. Quinn, Nature 413, 597 (2001).CrossRefADSPubMedGoogle Scholar
  4. 4.
    W. Kim, S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M.O. Zide, and A.C. Gossard, Appl. Phys. Lett. 88, 242107 (2006).CrossRefADSGoogle Scholar
  5. 5.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefADSGoogle Scholar
  6. 6.
    M. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gagna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  7. 7.
    N. Neophytou, A. Paul, M.S. Lundstrom, and G. Klimeck, IEEE Trans. Electron. Dev. 55, 1286 (2008).CrossRefADSGoogle Scholar
  8. 8.
    N. Neophytou, A. Paul, and G. Klimeck, IEEE Trans. Nanotechnol. 7, 710 (2008).CrossRefADSGoogle Scholar
  9. 9.
    T.B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).CrossRefADSGoogle Scholar
  10. 10.
    G. Klimeck, S. Ahmed, B. Hansang, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, T.B. Boykin, and R. Rahman, IEEE Trans. Electron. Dev. 54, 2079 (2007).CrossRefADSGoogle Scholar
  11. 11.
    G. Klimeck, S. Ahmed, N. Kharche, M. Korkusinski, M. Usman, M. Prada, and T.B. Boykin, IEEE Trans. Electron. Dev. 54, 2090 (2007).CrossRefADSGoogle Scholar
  12. 12.
    R. Landauer, IBM. J. Res. Dev. 1, 223 (1957).CrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).CrossRefADSGoogle Scholar
  14. 14.
    T.T.M. Vo, A.J. Williamson, and V. Lordi, Nano Lett. 8, 1111 (2008).CrossRefADSPubMedGoogle Scholar
  15. 15.
    T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefADSGoogle Scholar
  16. 16.
    D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003).CrossRefADSGoogle Scholar
  17. 17.
    R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).CrossRefADSPubMedGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Neophytos Neophytou
    • 1
  • Martin Wagner
    • 2
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTechnische Universität WienViennaAustria
  2. 2.O-Flexx Technologies GmbHRatingenGermany

Personalised recommendations