Advertisement

Journal of Electronic Materials

, Volume 39, Issue 9, pp 2002–2007 | Cite as

Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions

  • A. J. Zhou
  • T. J. Zhu
  • X. B. Zhao
  • S. H. Yang
  • T. Dasgupta
  • C. Stiewe
  • R. Hassdorf
  • E. Mueller
Article

Abstract

Polycrystalline higher manganese silicides (HMS) with Ge additions were prepared by induction melting followed by hot-pressing. The phase structures and microstructure of the pellets were investigated, and their thermoelectric properties were measured from room temperature to 650°C. It was found that the solubility of Ge in HMS was limited to around 1.6%, beyond which an extra phase of Si y Ge1−y appeared. The electrical conductivity was continuously enhanced by Ge additions, while the Seebeck coefficient was slightly decreased. The thermal conductivity showed first a decreasing then an increasing relationship with increasing Ge additions. The HMS cells, mainly along the c-axis, were remarkably enlarged by the substitution of Ge, which probably resulted in the enhancement of phonon scattering due to an increased number of defects, reducing the phonon thermal conductivity. The dimensionless figure of merit of the optimized HMS polycrystals was improved by more than 30% compared with the pure HMS material.

Keywords

Higher manganese silicides Ge additions thermoelectric properties hot-pressing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.E. Borisenko, ed., Semiconducting Silicides (Berlin: Springer, 2000).Google Scholar
  2. 2.
    M. Umemoto, Z.G. Liu, R. Omatsuzawa, and K. Tsuchiya, Mater. Sci. Forum 342–346, 918 (2000).CrossRefGoogle Scholar
  3. 3.
    A.J. Zhou, T.J. Zhu, H.L. Ni, Q. Zhang, and X.B. Zhao, J. Alloys Compd. 455, 255 (2008).CrossRefGoogle Scholar
  4. 4.
    M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook, ed. D.M. Rowe (New York: CRC, 2005), p. 31.Google Scholar
  5. 5.
    Z.M. Wang, Y.D. Wu, and Y.J. He, Int. J. Mod. Phys. B 18, 87 (2004).CrossRefADSGoogle Scholar
  6. 6.
    Z.M. Wang, Y.D. Wu, and Y.J. He, Int. J. Mod. Phys. B 18, 2279 (2004).CrossRefADSGoogle Scholar
  7. 7.
    M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, and M.V. Vedernikov, Tech. Phys. Lett. 23, 602 (1997).CrossRefADSGoogle Scholar
  8. 8.
    I. Kawasumi, M. Sakata, I. Nishida, and K. Masumoto, J. Mater. Sci. 16, 355 (1981).CrossRefADSGoogle Scholar
  9. 9.
    I. Kawasumi, M. Sakata, I. Nishida, and K. Masumoto, J. Cryst. Growth 49, 651 (1980).CrossRefADSGoogle Scholar
  10. 10.
    T. Kojima, I. Nishida, and M. Sakata, J. Cryst. Growth 47, 589 (1979).CrossRefADSGoogle Scholar
  11. 11.
    I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Yu Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).CrossRefADSGoogle Scholar
  12. 12.
    Q.R. Hou, W. Zhao, Y.B. Chen, D. Liang, X. Feng, H.Y. Zhang, and Y.J. He, Phys. Status Solidi A 204, 3429 (2007).CrossRefADSGoogle Scholar
  13. 13.
    Q.R. Hou, W. Zhao, Y.B. Chen, D. Liang, X. Feng, H.Y. Zhang, and Y.J. He, Appl. Phys. A 86, 385 (2007).CrossRefADSGoogle Scholar
  14. 14.
    Q.R. Hou, W. Zhao, H.Y. Zhang, Y.B. Chen, and Y.J. He, Phys. Status Solidi A 203, 2468 (2006).CrossRefADSGoogle Scholar
  15. 15.
    I. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).CrossRefADSGoogle Scholar
  16. 16.
    A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 38, 1072 (2009).CrossRefADSGoogle Scholar
  17. 17.
    O.G. Karpinskii and B.A. Evseev, Izv. Akad. Nauk SSSR, Neorg. Materialy. 5, 525 (1969).Google Scholar
  18. 18.
    O. Shwomma, A. Preisinger, H. Nowotny, and A. Wittman, Monatsh. Chem. 95, 1527 (1964).CrossRefGoogle Scholar
  19. 19.
    H.W. Knott, M.H. Mueller, and L. Heaton, Acta Crystallogr. 23, 549 (1967).CrossRefGoogle Scholar
  20. 20.
    G. Zwilling and H. Nowotny, Monatsh. Chem. 102, 672 (1971).CrossRefGoogle Scholar
  21. 21.
    E.N. Nikitin, A.F. Sidorov, V.I. Tarasov, and A.I. Zaslavskii, Izv. Akad. Nauk SSSR, Neorg. Materialy 6, 604 (1970).Google Scholar
  22. 22.
    D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, V.E. Borisenko, and N.N. Dorozhkin, Phys. Rev. B 77, 075205 (2008).CrossRefADSGoogle Scholar
  23. 23.
    M. Yuzuru, I. Dai, H. Kei, K. Tsuyoshi, and Y. Kunio, Phys. Rev. B 78, 214104 (2008).CrossRefGoogle Scholar
  24. 24.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefADSPubMedGoogle Scholar
  25. 25.
    H. Stohr and W. Klemm, Z. Anorg. Allgem. Chem. 241, 305 (1954).CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • A. J. Zhou
    • 1
    • 2
  • T. J. Zhu
    • 1
  • X. B. Zhao
    • 1
  • S. H. Yang
    • 1
  • T. Dasgupta
    • 2
  • C. Stiewe
    • 2
  • R. Hassdorf
    • 2
  • E. Mueller
    • 2
  1. 1.State Key Laboratory of Silicon Materials, Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Institute of Materials Research, German Aerospace Center (DLR)KölnGermany

Personalised recommendations