Advertisement

Journal of Electronic Materials

, Volume 39, Issue 9, pp 2017–2022 | Cite as

Thermoelectric Properties of Zr3Mn4Si6 and TiMnSi2

  • Ryosuke O. SuzukiEmail author
  • Hirotake Kozasa
Article

The Seebeck coefficient, electrical resistivity, and thermal conductivity of Zr3Mn4Si6 and TiMnSi2 were studied. The crystal lattices of these compounds contain relatively large open spaces, and, therefore, they have fairly low thermal conductivities (8.26 Wm−1 K−1 and 6.63 Wm−1 K−1, respectively) at room temperature. Their dimensionless figures of merit ZT were found to be 1.92 × 10−3 (at 1200 K) and 2.76 × 10−3 (at 900 K), respectively. The good electrical conductivities and low Seebeck coefficients might possibly be due to the fact that the distance between silicon atoms in these compounds is shorter than that in pure semiconductive silicon.

Key words

Thermal conductivity silicide Seebeck coefficient electrical resistivity layered structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to express their sincere gratitude to Mr. Kenji Ohkubo, Hokkaido University, for his kind technical assistance during the measurement of thermal conductivity by the laser-flash method. This work was financially supported in part by The Core Research of Evolutional Science & Technology (CREST) program of the Japan Science and Technology Agency (JST).

References

  1. 1.
    R.O. Suzuki and D. Tanaka, J. Power Sources 122, 201 (2003).CrossRefGoogle Scholar
  2. 2.
    R.O. Suzuki and D. Tanaka, J. Power Sources 124, 293 (2003).CrossRefGoogle Scholar
  3. 3.
    R.O. Suzuki and D. Tanaka, J. Power Sources 132, 266 (2004).CrossRefGoogle Scholar
  4. 4.
    R.O. Suzuki, J. Power Sources 133, 277 (2004).CrossRefGoogle Scholar
  5. 5.
    I. Matsubara, Y. Zhou, T. Takeuchi, R. Funahashi, M. Shikano, N. Murayama, W. Shin, and N. Izu, J. Ceram. Soc. Jpn. 111, 238 (2003).CrossRefGoogle Scholar
  6. 6.
    L. Siwen, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, and S. Sodeoka, Ceram. Int. 27, 321 (2001).CrossRefGoogle Scholar
  7. 7.
    Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, J. Appl. Phys. 39, 531 (2000).CrossRefGoogle Scholar
  8. 8.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B: Condens. Matter Mater. Phys. 56, 685 (1997).Google Scholar
  9. 9.
    Y. Hanada, R.O. Suzuki, and K. Ono, J. Alloys Compd. 329, 63 (2001).CrossRefGoogle Scholar
  10. 10.
    Y. Nishino, Intermetallics 8, 1233 (2000).CrossRefGoogle Scholar
  11. 11.
    A.V. Tkachuk, S.J. Crerar, and A. Mar, J. Solid State Chem. 177, 3939 (2004).CrossRefADSGoogle Scholar
  12. 12.
    J. Steinmentz, G. Venturini, and B. Roques, Acta Crystallogr., Sect. B: Struct. Sci. 38, 2103 (1982).CrossRefGoogle Scholar
  13. 13.
    N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (London: Oxford University Press, 1943).Google Scholar
  14. 14.
    N.A. Lange and J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1979), pp. 3-2–3-6.Google Scholar
  15. 15.
    G.S. Nolas, G. Fowler, and J. Yang, J. Appl. Phys. 100, 43705 (2006).Google Scholar
  16. 16.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefADSPubMedGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Department of Materials ScienceHokkaido UniversitySapporoJapan
  2. 2.Japan Science and Technology Agency (JST)TokyoJapan

Personalised recommendations