Journal of Electronic Materials

, Volume 39, Issue 9, pp 2112–2116

Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling

  • E. Hatzikraniotis
  • K. T. Zorbas
  • I. Samaras
  • Th. Kyratsi
  • K. M. Paraskevopoulos


Thermoelectric generators (TEGs) make use of the Seebeck effect in semiconductors for the direct conversion of heat to electrical energy. The possible use of a device consisting of numerous TEG modules for waste heat recovery from an internal combustion (IC) engine could considerably help worldwide efforts towards energy saving. However, commercially available TEGs operate at temperatures much lower than the actual operating temperature range in the exhaust pipe of an automobile, which could cause structural failure of the thermoelectric elements. Furthermore, continuous thermal cycling could lead to reduced efficiency and lifetime of the TEG. In this work we investigate the long-term performance and stability of a commercially available TEG under temperature and power cycling. The module was subjected to sequential hot-side heating (at 200°C) and cooling for long times (3000 h) in order to measure changes in the TEG’s performance. A reduction in Seebeck coefficient and an increase in resistivity were observed. Alternating-current (AC) impedance measurements and scanning electron microscope (SEM) observations were performed on the module, and results are presented and discussed.


Thermoelectricity thermoelectric power generator performance reliability of thermoelectric modules cyclic thermal loading alternating current impedance measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.R. Stabler, Automotive Applications for High Efficiency Thermoelectrics, High efficiency thermoelectric workshop, San Diego, California, March 24–27 (2002).Google Scholar
  2. 2.
    J. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245 (2009).CrossRefADSGoogle Scholar
  3. 3.
    J. Vázquez, M.A. Sanz-Bobi, R. Palacios, and A. Arenas, Proceedings of the 7th European Workshop on Thermoelectrics (2002), p. 17.Google Scholar
  4. 4.
    Ferrotec Corporation, Thermoelectric Technical Reference Guide.
  5. 5.
    F.R. Stabler, Mater. Res. Soc. Symp. Proc. 886, 0886-F01-04.1 (2006).Google Scholar
  6. 6.
    L.B. Yershova, G.G. Gromov, and I.A. Drabkin, Twenty-Second International Conference on Thermoelectrics (2003), p. 504.Google Scholar
  7. 7.
    G.G. Gromov, L.B. Yershova, and I.A. Drabkin, J. Thermoelect. 2, 61 (2004).Google Scholar
  8. 8.
    K.T. Zorbas, E. Hatzikraniotis, and K.M. Paraskevopoulos, Mater. Res. Soc. Symp. Proc. 1044, 1044-U09-15 (2008).Google Scholar
  9. 9.
    G. Gromov, D. Kondratiev, A. Rogov, and L. Yershova, Proceedings of the 6th European Workshop on Thermoelectricity (2001), p. 1.Google Scholar
  10. 10.
    A.D. Downey and T.P. Hogan, 24th International Conference on Thermoelectrics (2005), p. 79.Google Scholar
  11. 11.
    S. Dilhaire, L.D. Patino-Lopez, St. Grauby, J.M. Rampoux, S. Jorez, and W. Claeys, 21st International Conference on Thermoelectrics (2002), p. 321.Google Scholar
  12. 12.
    A.D. Downey, E. Timm, P.F.P. Poudeu, M.G. Kanatzidis, H. Shock, and T.P. Hogan, Mater. Res. Soc. Symp. Proc. 886, 0886-F10-07.1 (2006).Google Scholar
  13. 13.
    P.J. Taylor, W.A. Jesser, F.D. Rosi, and Z. Derzko, Semicond. Sci. Technol. 12, 443 (1997).CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • E. Hatzikraniotis
    • 1
  • K. T. Zorbas
    • 1
  • I. Samaras
    • 1
  • Th. Kyratsi
    • 2
  • K. M. Paraskevopoulos
    • 1
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations