Advertisement

Journal of Electronic Materials

, Volume 39, Issue 2, pp 178–186 | Cite as

Comparison of Bowing Behaviors Between III–V and II–VI Common-Cation Semiconductor Ternary Alloys

  • Nacir Tit
  • Noureddine Amrane
  • Ali Hussain Reshak
Article

Abstract

The scope of the present investigation is to make a clear contrast between the bandgap bowing characters of III–V and II–VI compound-semiconductor common-cation ternary alloys. For this aim, both the sp 3 s * tight-binding method, with the inclusion of spin–orbit coupling, and the full-potential linear augmented plane-wave technique are used to calculate the partial and total densities of states, the constituent ionicity, and the total electron charge density for the common-cation GaSb x As1−x and CdSe x Te1−x ternary alloys. The results show that the bowing is sensitive to competition between the anions for trapping/losing electric charges. The lack of this competition would result in complete absence of the bowing, as is the case for common-anion ternary alloys. In the common-cation ternary alloys studied herein, the bowing is found to be proportional to the electronegativity of the anions χ anion (i.e., the 6-valency anions are more electronegative than the 5-valency ones, and consequently the former result in stronger intercompetition and yield stronger bowing in the II–VI alloys) and also proportional to the relative mismatch in electronegativity between the competing anions \(({\Updelta}\chi^{\rm{anion}}/\chi^{\rm{anion}}_{\rm{ave}}).\) The excellent agreement between our theoretical results and recent photoluminescence data corroborates our claim.

Keywords

Electronic structure calculations III–V semiconductors II–VI semiconductors photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are indebted to Drs. N. Jisrawi and H. Alawadhi for fruitful discussions. This work was partially supported by the Research Affairs at the UAE University under Grant Number 08-02-2-11/09.

References

  1. 1.
    L.A. Kolodziejski, R.L. Gunshor, and A.V. Nurmikko, Annu. Rev. Mater. Sci. 25, 711 (1995).CrossRefGoogle Scholar
  2. 2.
    I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefADSGoogle Scholar
  3. 3.
    A. Erol, Dilute III–V Nitride Semiconductors and Material Systems (Berlin: Springer, 2008).CrossRefGoogle Scholar
  4. 4.
    F. El-Haj Hassan, S.J. Hashemifar, and H. Akbarzadeh, Phys. Rev. B 73, 195202 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M.J. Seong, H. Alawadhi, I. Miotkowski, A.K. Ramdas, and S. Miotkowska, Solid State Commun. 112, 329 (1999).CrossRefADSGoogle Scholar
  6. 6.
    Z. Charifi, F. El-Haj Hassan, H. Baaziz, Sh. Khosravizadeh, S.J. Hashemifar, and H. Akbarzadeh, J. Phys.: Condens. Matter. 17, 7077 (2005).CrossRefADSGoogle Scholar
  7. 7.
    R. Roucka, J. Tolle, B. Forrest, J. Kouvetakis, V.R. D’Costa, and J. Menéndez, J. Appl. Phys. 101, 013518 (2007).CrossRefADSGoogle Scholar
  8. 8.
    A. Zunger, Phys. Status Solidi B 216, 217 (1999).Google Scholar
  9. 9.
    N. Tit and M.W.C. Dharma-wardana, Appl. Phys. Lett. 76, 3576 (2000).CrossRefADSGoogle Scholar
  10. 10.
    N. Tit, J. Phys. D: Appl. Phys. 39, 2514 (2006).CrossRefADSGoogle Scholar
  11. 11.
    K. Kim, L.W. Hart Gus, and A. Zunger, Appl. Phys. Lett. 80, 3105 (2002).CrossRefADSGoogle Scholar
  12. 12.
    S.H. Wei and A. Zunger, Phys. Rev. B 39, 6279 (1989).CrossRefADSGoogle Scholar
  13. 13.
    S.H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997).CrossRefADSGoogle Scholar
  14. 14.
    J.A. Van Vechten and T.K. Bergstresser, Phys. Rev. B 1, 3351 (1970).CrossRefADSGoogle Scholar
  15. 15.
    A. Kobayashi, O.F. Sankey, and J.D. Dow, Phys. Rev. B 25, 6367 (1982).CrossRefADSGoogle Scholar
  16. 16.
    D. Olguín and R. Baquero, Phys. Rev. B 51, 16891 (1995).CrossRefADSGoogle Scholar
  17. 17.
    G. Klimeck, R.C. Bowen, T.B. Boykin, and T.A. Cwik, Superlatt. Microstruct. 27, 519 (2000).CrossRefADSGoogle Scholar
  18. 18.
    J. E. Bernard and A. Zunger, Phys. Rev. B 34, 5992 (1986).CrossRefADSGoogle Scholar
  19. 19.
    A.H. Reshak, Eur. Phys. J. B 47, 503 (2005).CrossRefADSGoogle Scholar
  20. 20.
    J. Singh, Physics of Semiconductors and Their Heterostructures (New York: McGraw-Hill, 1993).Google Scholar
  21. 21.
    W. Sham, W. Walukiewicz, J.W. Ager, K.M. Yu, J. Wu, and E. Haller, Appl. Phys. Lett. 84, 67 (2004).CrossRefADSGoogle Scholar
  22. 22.
    H.C. Poon, Z.C. Feng, Y.P. Feng, and M.F. Li, J. Phys.: Condens. Matter. 7, 2783 (1995).CrossRefADSGoogle Scholar
  23. 23.
    E. Campo, T. Hierl, and J. Hwang, Proc. SPIE 5564, 86 (2004).Google Scholar
  24. 24.
    S.-H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).CrossRefADSGoogle Scholar
  25. 25.
    H.J. Monkhorst and J.P. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ed. K. Schwarz (Wien, Austria: Techn. Universitat, 2001).Google Scholar
  27. 27.
    J.P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefPubMedADSGoogle Scholar
  28. 28.
    B. Kohler, S. Wilke, M. Scheffler, R. Kouba, and C. Ambrosch-Draxl, Comput. Phys. Commun. 94, 31 (1996).CrossRefADSGoogle Scholar
  29. 29.
    J. Singh and L. Nordstrom, Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer, 2006).Google Scholar
  30. 30.
    W. Harrison, Electronic Structure and Properties of Solids: The Physics of Chemical Bonds (San Francisco: Freeman, 1980).Google Scholar
  31. 31.
    L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).CrossRefGoogle Scholar
  32. 32.
    Wikipedia, the free encyclopedia: http://www.en.wikipedia.org/wiki/Main_Page.
  33. 33.
    J.H. Chang, M.W. Cho, H. Makino, T. Sekiguchi, and T. Yao, J. Korean Phys. Soc. 34, S4 (1999).Google Scholar
  34. 34.
    W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, I. Miotkowski, M.J. Seong, H. Alawadhi, and A.K. Ramdas, Phys. Rev. Lett. 85, 1552 (2000).CrossRefPubMedADSGoogle Scholar
  35. 35.
    K.M. Yu, J. Wu, W. Walukiewicz, J.W. Ager, E.E. Haller, I. Miotkowski, and A. Ramdas, J. Electron. Mater. 31, 754 (2002).CrossRefADSGoogle Scholar
  36. 36.
    J. Wu, W. Shan, and W. Walukiewicz, Semicond. Sci. Technol. 17, 860 (2002).CrossRefADSGoogle Scholar
  37. 37.
    N. Tit, I.M. Obaidat, and H. Alawadhi, J. Alloys Compd. 481, 340 (2009).CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Nacir Tit
    • 1
  • Noureddine Amrane
    • 1
  • Ali Hussain Reshak
    • 2
  1. 1.Department of PhysicsUAE UniversityAl-AinUnited Arab Emirates
  2. 2.Institute of Physical BiologySouth-Bohemia UniversityNove HradyCzech Republic

Personalised recommendations