Methodology for Analyzing Strain States During In Situ Thermomechanical Cycling in Individual Lead-Free Solder Joints Using Synchrotron Radiation

Article

Abstract

To examine how a lead-free solder joint deforms in a thermal cycling environment, both the elastic and plastic stress and strain behavior must be understood. Methods to identify evolution of the internal strain (stress) state during thermal cycling are described. A slice of a package containing a single row of solder joints was thermally cycled from 0°C to 100°C with a period of about 1 h with concurrent acquisition of transmission Laue patterns using synchrotron radiation. These results indicated that most joints are single crystals, with some being multicrystals with no more than a few Sn grain orientations. Laue patterns were analyzed to estimate local strains in different crystal directions at different temperatures during a thermal cycle. While the strains perpendicular to various crystal planes all vary in a similar way, the magnitude of strain varies. The specimens were subsequently given several hundred additional thermal cycles and measured again to assess changes in the crystal orientations. These results show that modest changes in crystal orientations occur during thermal cycling.

Keywords

Synchrotron internal strain lead-free solder thermal cycling microstructure evolution 

References

  1. 1.
    A.U. Telang, T.R. Bieler, S. Choi, and K.N. Subramanian, J.␣Mater. Res. 17, 2294 (2002).CrossRefADSGoogle Scholar
  2. 2.
    A. La Londe, D. Emelander, J. Jeannette, C. Larson, W. Rietz, D. Swenson, and D.W. Henderson, J. Electron. Mater. 33, 1545 (2004).CrossRefADSGoogle Scholar
  3. 3.
    L.P. Lehman, S.N. Athavale, T.Z. Flem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J.␣Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J.␣Electron. Mater. 33, 1429 (2004).CrossRefADSGoogle Scholar
  4. 4.
    S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. JIM 45, 1383 (2004).CrossRefGoogle Scholar
  5. 5.
    P. Borgesen, T. Bieler, L.P. Lehman, and E.J. Cotts, MRS Bull. 32, 360 (2007).Google Scholar
  6. 6.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).CrossRefGoogle Scholar
  7. 7.
    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. (2009), submitted.Google Scholar
  8. 8.
    A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).CrossRefGoogle Scholar
  9. 9.
    I.E. Anderson, J. Mater. Sci. 18, 55 (2007).Google Scholar
  10. 10.
    I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411, 48 (2005).Google Scholar
  11. 11.
    T.-K. Lee, K.-C. Liu, and T.R. Bieler, Microstructure and Orientation Evolution of the Sn Phase as a Function of Position in Ball Grid Arrays in Sn-Ag-Cu Solder Joints (this␣volume).Google Scholar
  12. 12.
    D.G. House and E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960).CrossRefADSGoogle Scholar
  13. 13.
    V.T. Deshpande and D.B. Sirdeshmukh, Acta Cryst. 15, 294 (1962).CrossRefGoogle Scholar
  14. 14.
    M.A. Matin, E.W.C. Coenen, W.P. Vellinga, and M.G.D. Geers, Scripta Mater. 53, 927 (2005).CrossRefGoogle Scholar
  15. 15.
    M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 431, 166 (2006).CrossRefGoogle Scholar
  16. 16.
    T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély, J. Appl. Cryst. 34, 298 (2001).CrossRefGoogle Scholar
  17. 17.
    P.R. Dawson, D.E. Boyce, and R.B. Rogge, Mater. Sci. Eng. A 399, 13 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Hecker, E. Thiele, and C. Holste, Acta Mater. 50, 2357 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Borbély and J.H. Driver, Mater. Sci. Eng. A 387–389, 231 (2004).Google Scholar
  20. 20.
    G. Schumacher, N. Darowski, I. Zizak, H. Klingelhöffer, and W. Neumann, Scripta Mater. 60, 88 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Royer, P. Bastie, and M. Véron, Mater. Sci. Eng. A 234–236, 1110 (1997).Google Scholar
  22. 22.
    L. Margulies, T. Lorentzen, H.F. Poulsen, and T. Leffers, Acta Mater. 50, 1771 (2002).CrossRefGoogle Scholar
  23. 23.
    U. Lienert, M.C. Brandes, J.V. Bernier, J. Weiss, S.D. Shastri, M.J. Mills, and M.P. Miller, Mater. Sci. Eng. A (2009). doi:10.1016/j.msea.2009.06.047.
  24. 24.
    T.R. Bieler and A.U. Telang, Analysis of Slip Behavior in a Single Shear Lap Lead Free Solder Joint During Simple Shear at 25°C and 0.1/s (this volume).Google Scholar
  25. 25.
    B. Zhou, T.R. Bieler, A.U. Telang, T.-K. Lee, and K.-C. Liu, Methodology for Analyzing Slip Behavior in Individual Lead␣free Solder Joints During Simple Shear (this volume).Google Scholar
  26. 26.
    G. Wu and S. Zaefferer, Ultramicroscopy (2009). doi:10.1016/j.ultramic.2009.06.002.
  27. 27.
  28. 28.
    M.E. Kassner, P. Geantil, L.E. Levine, and B.C. Larson, Int. J. Mater. Res. 100, 333 (2009).Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.Cisco Systems, Inc.San JoseUSA

Personalised recommendations