Mechanical Property Evaluation of Sn-3.0A-0.5Cu BGA Solder Joints Using High-Speed Ball Shear Test

  • Sang-Su Ha
  • Jin-Kyu Jang
  • Sang-Ok Ha
  • Jong-Woong Kim
  • Jeong-Won Yoon
  • Byung-Woo Kim
  • Sun-Kyu Park
  • Seung-Boo Jung


The traditional ball shear test is not suitable for evaluating joint reliability under drop loading, since the applied test speeds, usually lower than 5 mm/s, are well below the impact velocity applied to the solder joint in a drop test. The present study expands recently reported research by investigating the effect of thermal aging on the joint strength and fracture mode of Sn-3.0Ag-0.5Cu ball grid arrays during high-speed shear testing, with a shear height of 50 μm and a shear speed ranging from 0.01 m/s to 3 m/s. The test specimens were aged at 393 K for 1000 h. After reflow, a (Ni,Cu)3Sn4 intermetallic compound (IMC) layer was observed at the solder/Ni-P interface and the thickness of the IMC layer was increased through the aging process. The shear strength increased with increasing shear speed. The fracture surface of the solder joints showed three different fracture modes according to the shear speed and aging time. The fracture mode changed from ductile fracture to brittle fracture with increasing shear speed.


Sn-3.0Ag-0.5Cu solder ball grid array (BGA) high-speed ball shear test thermal aging 


  1. 1.
    A.R. Zbrzezny, P. Snugovsky, and D.D. Perovic, Microelectron. Reliab. 47, 2205 (2007).CrossRefGoogle Scholar
  2. 2.
    Y.S. Lai, P.F. Yang, and C.L. Yeh, Microelectron. Reliab. 46, 645 (2006).CrossRefGoogle Scholar
  3. 3.
    E.H. Wong, R. Rajoo, S.K.W. Seah, C.S. Selvanayagam, W.D. van Driel, J.F.J.M. Caers, X.J. Zhao, N. Owen, L.C. Tan, M. Leoni, P.L. Eu, Y.-S. Lai, and C.-L. Yeh, Microelectron. Reliab. 48, 1069 (2008).CrossRefGoogle Scholar
  4. 4.
    Y.S. Lai, P.C. Yang, C.L. Yeh, and T.H. Wang, Proceedings of the 38th International Symposium Microelectronics (Philadelphia: IEEE, 2005), pp. 199–205.Google Scholar
  5. 5.
    C. Birzer, B. Rakow, R. Steiner, and J. Walter, Proceedings of the 7th Electronic Packaging Technology Conference (Singapore: IEEE, 2005), pp. 255–261.Google Scholar
  6. 6.
    D.Y.R. Chong, F.X. Che, J.H.L. Pang, K. Ng, J.Y.N. Tan, and P.T.H. Low, Microelectron. Reliab. 46, 1160 (2006).CrossRefGoogle Scholar
  7. 7.
    F. Song, S.W. Ricky Lee, K. Newman, B. Sykes, and S.␣Clark, Proceedings of the 2007 Electronic Components and Technology Conference (Reno: IEEE, 2007), pp. 364–372.Google Scholar
  8. 8.
    E. Kaulfersch, S. Rzepka, V. Ganeshan, A. Muller, and B. Michel, Proceedings of the International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems (London: IEEE, 2007), pp. 1–4.Google Scholar
  9. 9.
    B. Zhao, B. An, F.S. Wu, and Y.P. Wu, Proceedings of the 7th International Conference on Electronics Packaging Technology (Shanghai: IEEE, 2006), pp. 1–5.Google Scholar
  10. 10.
    C.L. Yeh, Y.S. Lai, H.C. Chang, and T.H. Chen, Microelectron. Reliab. 47, 1127 (2007).CrossRefGoogle Scholar
  11. 11.
    JESD22-B117A, JEDEC Solid State Technology Association, 2006.Google Scholar
  12. 12.
    J.W. Kim and S.B. Jung, Int. J. Solids Struct. 43, 1928 (2006).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J.W. Kim and S.B. Jung, Mater. Sci. Eng. A 371, 267 (2004).CrossRefGoogle Scholar
  14. 14.
    J.W. Kim, D.G. Kim, and S.B. Jung, Microelectron. Reliab. 46, 535 (2006).CrossRefGoogle Scholar
  15. 15.
    Y.D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K.W. Paik, J. Electron. Mater. 32, 548 (2003).CrossRefADSGoogle Scholar
  16. 16.
    C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).CrossRefADSGoogle Scholar
  17. 17.
    G.E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill, 1988).Google Scholar
  18. 18.
    A. Nadai, Theory of Flow and Fracture of Solids (New York: McGraw-Hill, 1950).Google Scholar
  19. 19.
    G.R. Johnson and W.H. Cook, Proceedings of 7th International Symposium on Ballistics (Hague: Technomic. Pub. Co., 1983), pp. 541–549.Google Scholar
  20. 20.
    F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 61, 1816 (1987).CrossRefADSGoogle Scholar
  21. 21.
    S.R. Bodner and Y.J. Partom, J. Appl. Mech. 42, 385 (1975).Google Scholar
  22. 22.
    P.S. Symmonds, Behaviour of Materials under Dynamic Loading (New York: ASME, 1965).Google Scholar
  23. 23.
    J.W. Kim, J.W. Yoon, and S.B. Jung, Mater. Sci. Forum 449, 897 (2004).CrossRefGoogle Scholar
  24. 24.
    J.M. Koo and S.B. Jung, Microelectron. Reliab. 47, 2169 (2007).CrossRefGoogle Scholar
  25. 25.
    J.W. Jang, P.D. Ananda, E.D. James, L.P. Steve, L.O. Norman, J.K. Lin, and R.F. Darrel, IEEE Trans. Electron. Packag. Manuf. 30, 49 (2007).CrossRefGoogle Scholar
  26. 26.
    T.T. Mattila and J.K. Kivilahti, J. Electron. Mater. 34, 969 (2005).CrossRefADSGoogle Scholar
  27. 27.
    Y.H. Xia, C.Y. Lu, and X.M. Xie, J. Electron. Mater. 36, 1129 (2007).CrossRefADSGoogle Scholar
  28. 28.
    W. Peng and M.E. Marques, J. Electron. Mater. 36, 1679 (2007).CrossRefADSGoogle Scholar
  29. 29.
    S.J. Jeon, S.M. Hyun, H.J. Lee, J.W. Kim, S.S. Ha, J.W. Yoon, S.B. Jung, and H.J. Lee, Microelectron. Eng. 85, 1967 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Sang-Su Ha
    • 1
  • Jin-Kyu Jang
    • 1
  • Sang-Ok Ha
    • 1
  • Jong-Woong Kim
    • 1
  • Jeong-Won Yoon
    • 1
  • Byung-Woo Kim
    • 2
  • Sun-Kyu Park
    • 3
  • Seung-Boo Jung
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Chemical EngineeringSungkyunkwan UniversitySuwonKorea
  3. 3.Department of Civil and Environmental EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations