Advertisement

Journal of Electronic Materials

, Volume 38, Issue 12, pp 2726–2734 | Cite as

The Effect of Micro-Alloying of Sn Plating on Mitigation of Sn Whisker Growth

  • Aleksandra Dimitrovska
  • Radovan KovacevicEmail author
Article

Abstract

Tin (Sn) is a key industrial material in coatings on various components in the electronics industry. However, Sn is prone to the development of filament-like whiskers, which is the leading cause of many types of damage to electronics reported in the last several decades. Due to its properties, a tin-lead (Sn-Pb) alloy coating can mitigate Sn whisker growth. However, the demand for Pb-free surface finishes has rekindled interest in the Sn whisker phenomenon. In order to achieve properties similar to those naturally developed in a Sn-Pb alloy coating, we carried out a study on deposited films with other Sn alloys, such as tin-bismuth (Sn-Bi), tin-zinc (Sn-Zn), and tin-copper (Sn-Cu), electrodeposited onto a brass substrate by utilizing a pulse plating technique. The results indicated that the Sn alloy films modified the columnar grain structure of pure Sn into an equiaxed grain structure and increased the incubation period of Sn whisker growth. The primary conclusions were based on analysis of the topography and microstructural characteristics in each case, as well as the stress distribution in the plated films computed by x-ray diffraction, and the␣amount of Sn whisker growth in each case, over 6 months under various environmental influences.

Keywords

Sn whisker XRD stress analysis micro-alloying of Sn Sn plating Pb-free equiaxed grain structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Price, Tin and Tin Alloy Plating (Ayr, Scotland: Electrochemical, 1983).Google Scholar
  2. 2.
    G.T. Galyon, IEEE Trans. Electron. Packag. Manuf. 28, 94 (2005).CrossRefGoogle Scholar
  3. 3.
    S.M. Arnold, Plating 53, 96 (1966).Google Scholar
  4. 4.
    J.C. Puippe and F. Leaman, Theory and Practice of Pulse Plating (Orlando, FL: AES, 1986).Google Scholar
  5. 5.
    M. Chen, S. Ding, Q. Sun, D.W. Zhang, and L. Wang, J.␣Electron. Mater. 37, 894 (2008).zbMATHCrossRefADSGoogle Scholar
  6. 6.
    E. Sandnes, M.E. Williams, M.D. Vaudin, and G.R. Stafford, J. Electron. Mater. 37, 490 (2007).CrossRefADSGoogle Scholar
  7. 7.
  8. 8.
    M.P. Groover, Fundamentals of Modern Manufacturing, 3rd␣ed. (Hoboken, NJ: Wiley, 2007), p. 3e.Google Scholar
  9. 9.
    C. Xu, Y. Zhang, C. Fan, J. Abys, L. Hopkins, and F. Stevie. Proceedings of the IPC SMEMA APEX Conference, S-06-2-1 (2002).Google Scholar
  10. 10.
    K. Whitlaw and J. Crosby. Proceedings of the AESF SUR/FIN Conference (2002), p. 19.Google Scholar
  11. 11.
    M.-H. Lu and K.-C. Hsieh, J. Electron. Mater. 36, 1448 (2007).CrossRefADSGoogle Scholar
  12. 12.
    W. Zhang and F. Schwager, J. Electrochem. Soc. 153, C337 (2006).CrossRefGoogle Scholar
  13. 13.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar. Appl. Phys. Lett. 92, 171901 (2008).Google Scholar
  14. 14.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).CrossRefGoogle Scholar
  15. 15.
    R. Schetty, Proceedings of the IPC Works, S-02-3-1 (2000).Google Scholar
  16. 16.
    K.N. Tu, Acta Metall. 21, 347 (1973).CrossRefGoogle Scholar
  17. 17.
    K.J. Puttlitz and K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (New York: Marcel Dekker, 2004).Google Scholar
  18. 18.
    S.C. Britton and M. Clarke, Proceedings of the 6th International Metal Finishing Conference (1964), p. 205.Google Scholar
  19. 19.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  20. 20.
    J. Smetana, J. IEEE Trans. Electron. Packag. Manuf. 30, 1 (2007).CrossRefGoogle Scholar
  21. 21.
    iNEMI Recommendations on Lead-Free Finishes for Components Used in High-Reliability Products, Version 4 (2006).Google Scholar
  22. 22.
    J.A. Pineault, M. Belassel, and M.E. Brauss, X-Ray Diffraction Residual Stress Measurement in Failure Analysis (Old Castle, Canada: Proto Manufacturing Ltd., 2009).Google Scholar
  23. 23.
    P.J. Withers and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 355 (2001).CrossRefGoogle Scholar
  24. 24.
    A.D. Krawitz, R.A. Winholtz, and C.M. Weisbrook, Mater. Sci. Eng. A206, 176 (1995).Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.School of Engineering, Research Center for Advanced ManufacturingSouthern Methodist UniversityDallasUSA

Personalised recommendations