Effect of Electromigration and Isothermal Aging on the Formation of Metal Whiskers and Hillocks in Eutectic Sn-Bi Solder Joints and Reaction Films

  • Fu Guo
  • Guangchen Xu
  • Hongwen He
  • Mengke Zhao
  • Jia Sun
  • C. Henry Wang

Numerous electronic system failures have been attributed to short circuits caused by metal whiskers that bridged closely spaced circuit elements when they were maintained in a high-current-density environment. Typically, in single-phase interconnect materials, atoms are driven from the cathode to the anode and a compressive stress can build up at the anode end of the stripe, which can induce the formation of whiskers and hillocks. However, the electronic solders used in interconnects are multiphase materials where primary and secondary diffusion atoms/ions exist. In order to accelerate the growth of whiskers and hillocks, a high current density (104 A/cm2) combined with high ambient temperatures (80°C) was applied to eutectic Sn-Bi solder joints. Metal whiskers and hillocks were observed on the overflowed solder film above the Cu substrate. However, in the absence of the electric field, metal whiskers and hillocks could also be squeezed out from the solder reaction films after several days of isothermal aging (125°C), demonstrating that the chemical reaction between Sn atoms and Cu atoms can provide the driving force for the formation and growth of metal whiskers and hillocks.


Electromigration metal whisker metal hillock isothermal aging 



The authors acknowledge the financial support of this work from the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ200910005004), the Academic Innovation Group Supporting Program of Beijing Municipality, and the China Scholarship Council (2008654006). The authors are grateful to the helpful discussions with Prof. K.N. Subramanian and Prof. Andre Lee at Michigan State University.


  1. 1.
    K.N. Tu and J.C.M. Li, Mater. Sci. Eng. A 409, 131 (2005).CrossRefGoogle Scholar
  2. 2.
    J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, and F.A. Baiocchi, J. Mater. Sci.: Mater. Electron. 18, 283 (2007).CrossRefGoogle Scholar
  3. 3.
    J.B. LeBret and M.G. Norton, J. Mater. Res. 18, 585 (2003).CrossRefADSGoogle Scholar
  4. 4.
    I.A. Blech, P.M. Petroff, K.L. Tai, and V. Kumar, J. Cryst. Growth 32, 161 (1975).CrossRefADSGoogle Scholar
  5. 5.
    N. Furuta and K. Hamamura, J. Appl. Phys. 8, 1404 (1969).CrossRefGoogle Scholar
  6. 6.
    K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci.: Mater. Electron. 18, 269 (2007).CrossRefGoogle Scholar
  7. 7.
    C.Y. Liu, C. Chen, and K.N. Tu, J. Appl. Phys. 80, 5703 (2000).CrossRefADSGoogle Scholar
  8. 8.
    S.H. Liu, C. Chen, P.C. Liu, and T. Chou, J. Appl. Phys. 95, 7742 (2004).CrossRefADSGoogle Scholar
  9. 9.
    G.T.T. Sheng, C.F. Hu, and W.J. Choi, J. Appl. Phys. 92, 64 (2002).CrossRefADSGoogle Scholar
  10. 10.
    G.T. Galyon and L. Palmer, IEEE Trans. Electron. Packag. Manuf. 28, 17 (2005).CrossRefGoogle Scholar
  11. 11.
    M.S. Yoon, M.K. Ko, O.H. Kim, Y.B. Park, W.D. Nix, and Y.C. Joo, J. Electron. Mater. 36, 562 (2007).CrossRefADSGoogle Scholar
  12. 12.
    Y.L. Lin, Y.S. Lai, Y.W. Lin, and C.R. Kao, J. Electron. Mater. 37, 96 (2007).CrossRefADSGoogle Scholar
  13. 13.
    C.E. Ho, A. Lee, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 18, 569 (2007).CrossRefGoogle Scholar
  14. 14.
    G.C. Xu, H.W. He, and F. Guo, J. Electron. Mater. 38, 273 (2009).CrossRefADSGoogle Scholar
  15. 15.
    G.C. Xu, H.W. He, and F. Guo, J. Mater. Sci.: Mater. Electron. 20, 276 (2009).CrossRefGoogle Scholar
  16. 16.
    S.W. Chen, C.H. Wang, S.K. Lin, and C.N. Chiu, J. Mater. Sci.: Mater. Electron. 18, 19 (2007).CrossRefGoogle Scholar
  17. 17.
    K.N. Tu, Solder Joint Technology: Materials, Properties and Reliability (Springer, 2007).Google Scholar
  18. 18.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Fu Guo
    • 1
  • Guangchen Xu
    • 1
    • 2
  • Hongwen He
    • 1
  • Mengke Zhao
    • 1
  • Jia Sun
    • 1
  • C. Henry Wang
    • 3
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingP.R. China
  2. 2.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  3. 3.Electronics Group, Henkel CorpIrvineUSA

Personalised recommendations