Journal of Electronic Materials

, Volume 38, Issue 11, pp 2388–2397 | Cite as

Primary Creep in Sn-3.8Ag-0.7Cu Solder, Part II: Constitutive Creep Model Development and Finite Element Analysis

  • D. R. Shirley
  • J. K. Spelt


A constitutive creep model is presented for Sn-3.8Ag-0.7Cu that incorporates both transient and steady-state creep to provide agreement for both creep and stress relaxation data with a single set of eight coefficients. The model utilizes both temperature-compensated time and strain rate to normalize minimum strain rate and saturated transient creep strain, thereby establishing equivalence between decreased temperature and increased strain rate. The apparent activation energy of steady-state creep, 83.6 kJ/mol, was indicative of both dislocation core and bulk lattice diffusion. A saturation threshold was defined that distinguishes whether transient or steady-state creep is dominant under either static or variable loading.


Tin–silver–copper (Sn-Ag-Cu) solder transient creep constitutive model creep fatigue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Rodriguez and K.B.S. Rao, Prog. Mater. Sci. 37, 403 (1993).CrossRefGoogle Scholar
  2. 2.
    A.J. Kennedy, Processes of Creep and Fatigue in Metals (New York: Wiley, 1963).Google Scholar
  3. 3.
    O.D. Sherby and P.M. Burke, Prog. Mater. Sci. 13, 323 (1968).CrossRefGoogle Scholar
  4. 4.
    D.R. Shirley, H.R. Ghorbani, and J.K. Spelt, SMTA International Conference on Lead-Free Soldering (Toronto, 2006).Google Scholar
  5. 5.
    D.R. Shirley, H.R. Ghorbani, and J.K. Spelt, Microelectron. Reliab. 48, 455 (2008).CrossRefGoogle Scholar
  6. 6.
    N.K. Sinha, J. Mater. Sci. Lett. 21, 871 (2002).CrossRefGoogle Scholar
  7. 7.
    J.P. Clech, SMTA SMTAI (Chicago, 2004), p. 776.Google Scholar
  8. 8.
    A. Syed, IEEE ECTC (New Orleans, 2004), p. 737.Google Scholar
  9. 9.
    G.E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill, 1986).Google Scholar
  10. 10.
    F. Garofalo, ASTM STP 283, 82 (1961).Google Scholar
  11. 11.
    R. Darveaux and K. Banerji, IEEE Trans. Compon. Hybr. 15, 1013 (1992).CrossRefGoogle Scholar
  12. 12.
    M. Mayuzumi and T. Onchi, J. Nucl. Mater. 171, 381 (1990).CrossRefADSGoogle Scholar
  13. 13.
    D.R. Shirley and J.K. Spelt, J. Electron. Mater. (2009). doi: 10.1007/s11664-009-0901-5.
  14. 14.
    Matlab Statistics Toolbox 7: User’s Guide (Natick, MA: The Mathworks Inc., 2008).Google Scholar
  15. 15.
    Ansys Elements Reference (Canonsburg, PA: Ansys Inc., 2007).Google Scholar
  16. 16.
    N.E. Dowling, Mechanical Behavior of Materials (Upper Saddle River, NJ: Prentice Hall, 1999).Google Scholar
  17. 17.
    C. Zener and J.H. Hollomon, J. Appl. Phys. 15, 22 (1944).CrossRefADSGoogle Scholar
  18. 18.
    Programmer’s Manual for Ansys (Canonsburg, PA: Ansys Inc., 2007)Google Scholar
  19. 19.
    P. Vianco, J. Electron. Mater. 33, 1389 (2004).CrossRefADSGoogle Scholar
  20. 20.
    J. Mooris, H.G. Song, and F. Hua, IEEE ECTC (New Orleans, 2003), p. 54.Google Scholar
  21. 21.
    P. Vianco, Lead-Free Solder Interconnect Reliability, ed. D. Shangguan (Materials Park, OH: ASM, 2005), p. 67.Google Scholar
  22. 22.
    O.D. Sherby and J. Weertman, Acta Metall. Mater. 27, 387 (1979).CrossRefGoogle Scholar
  23. 23.
    F. Ochoa, X. Deng, and N. Chawla, J. Electron. Mater. 33, 1596 (2004).CrossRefADSGoogle Scholar
  24. 24.
    M. Kerr and N. Chawla, Acta Mater. 52, 4527 (2004).CrossRefGoogle Scholar
  25. 25.
    IEEE/Wiley Review and Analysis of Lead-Free Solder Material Properties (2003).Google Scholar
  26. 26.
    J. Pang, B. Xiong, and T. Low, Micromater. Nanomater. 3, 86 (2004).Google Scholar
  27. 27.
    F.R.N. Nabarro, Philos. Mag. 16, 231 (1967).CrossRefADSGoogle Scholar
  28. 28.
    Y.H. Pao, S. Badgley, R. Govila, and E. Jih, ASTM STP 1153, 60 (1994).Google Scholar
  29. 29.
    D.C. Stouffer and L.T. Dame, Inelastic Deformation of Metals (New York: Wiley, 1996), pp. 188–190.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations