Journal of Electronic Materials

, Volume 38, Issue 9, pp 1815–1825 | Cite as

Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development. Part I: A Model

Open Access


A model is proposed that attributes whisker growth in metals and alloys to dynamic recrystallization (DRX) and, in particular, DRX at the material surface. Each step in the DRX process was correlated to the development of whiskers. The DRX model depends upon the details of the deformation process(es) responsible for new grain initiation and growth. The dependencies exhibited by DRX as a function of deformation strain rate, temperature, and microstructure correlate with the behaviors of whisker development. Anomalous or ultrafast diffusion mechanisms, either by themselves or associated with the deformation structures, provide the means of mass transport necessary to grow whiskers. In Part II of this study, the strain and rate kinetics data are determined for Sn. Parts I and II, together, provide a critical step towards developing a capability to predict the conditions that are likely to cause whisker growth in engineering applications.


Dynamic recrystallization tin whisker growth 


  1. 1.
    H. Leidecker, Other Metal Whiskers (NASA Goddard Space Flight Center, 2008),
  2. 2.
    P. Key, Proc. Electronic Components Conference (1975), pp.␣155–157.Google Scholar
  3. 3.
    J. Busse, Whiskers of Tin-Lead (Sn-Pb) on Reflowed Die Attach Solder Used in the Manufacture of a Laser Diode Array (NASA Goddard Space Flight Center, 2003),
  4. 4.
    R. Fisher, L. Darken, and K. Carroll, Acta Met. 2, 368 (1954).CrossRefGoogle Scholar
  5. 5.
    N. Hannay, W. Kaiser, and C. Thurmond, Annu. Rev. Phys. Chem. 11, 407 (1960).CrossRefGoogle Scholar
  6. 6.
    I. Boguslavsky and P. Bush, Proc. APEX 2003 (2003), pp.␣S12-4-1–S12-4-10.Google Scholar
  7. 7.
    J. Smetana, Presentation, iNEMI Tin Whisker Workshop during the Electronic Components and Technology Conference (2005).Google Scholar
  8. 8.
    U. Lindberg, Acta Met. 24, 181 (1976).CrossRefGoogle Scholar
  9. 9.
    V.G. Garcia Ferendez (Ph.D. Thesis, Escola Tecnica Superior d’Enginyeria Industrial de Barcelona, U. Politecnica de Catalunya, Bacelona, Spain, 2004).Google Scholar
  10. 10.
    T. Sakai and J. Jones, Acta Met. 32, 189 (1984).CrossRefGoogle Scholar
  11. 11.
    H. McQueen, Mater. Sci. Eng. A 387–389, 203 (2004).Google Scholar
  12. 12.
    M. Barnett, G. Kelly, and P. Hodgson, Scr. Mater. 43, 365 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Barnett, G. Kelly, and P. Hodgson, Metall. Mater. Trans. A 33A, 1893 (2002).CrossRefGoogle Scholar
  14. 14.
    A. Najafizadeh and J. Jonas, ISIJ Inter. 46, 1679 (2006).CrossRefGoogle Scholar
  15. 15.
    F. Montheillet and J.-P. Thomas, Metallic Materials with High Structural Efficiency (Netherlands: Kluwer Academic, 2004), pp. 357–368.CrossRefGoogle Scholar
  16. 16.
    S. Serajzadeh, Model. Simul. Mater. Sci. Eng. 12, 1185 (2004).CrossRefADSGoogle Scholar
  17. 17.
    L. Dougherty, I. Robertson, and J. Vetrano, Acta Mater. 51, 4367 (2003).CrossRefGoogle Scholar
  18. 18.
    I. Salvatori, T. Inoue, and K. Nagai, ISIJ Int. 42, 744 (2002).CrossRefGoogle Scholar
  19. 19.
    F. Thijssen, Effect of Strain on Microstructural Evolution During Dynamic Recrystallization: Experiments on Tin (Ph.D. Thesis, Ultrecht University, Netherlands, 2004).Google Scholar
  20. 20.
    D. Smith, C. Rae, and C. Grovenor, Grain Boundary Structure and Kinetics (Materials Park, OH: ASM, Intl., 1979), pp. 337–371.Google Scholar
  21. 21.
    F. Haessner and S. Hoffman, Recrystallization of Metallic Materials (Stuttgart, Germany: Dr. Riederer Verlag GmbH, 1978), pp. 63–95.Google Scholar
  22. 22.
    K.-W. Moon, C. Johnson, M. Williams, O. Kongstein, G. Strafford, C. Handwerker, and W. Boettinger, J. Electron. Mater. 34, L31 (2005).CrossRefADSGoogle Scholar
  23. 23.
    K. Courey, S. Asfour, J. Bayliss, L. Ludwig, and M. Zapata, IEEE Trans. Electron. Packag. Manuf. 31, 32 (2008).CrossRefGoogle Scholar
  24. 24.
    G. Gaylon, iNEMI Monograph (Herdon, VA: iNEMI, 2003).Google Scholar
  25. 25.
    M. Williams, K.-W. Moon, W. Boettinger, D. Josell, and A.␣Deal, J. Electron. Mater. 36, 214 (2007).CrossRefADSGoogle Scholar
  26. 26.
    J. Cheng, S. Chen, P. Vianco, and J. Li, Proc. 58th Electronic Components and Technology Conference (2008) CD-ROM.Google Scholar
  27. 27.
    K. Tsuji, Proc. IPC/JEDEC Conference (2003), pp. 169–186.Google Scholar
  28. 28.
    G. Gaylon, IEEE Trans. EPM 28, 94 (2005).Google Scholar
  29. 29.
    W. Choi, Y. Lee, K. Tu, N. Tamura, R. Celestre, A. MacDowell, Y. Bong, L. Nguyen, and G. Shen, Proc. 52nd Electronic Components and Technology Conference (2002), pp. 628–633.Google Scholar
  30. 30.
    P. Vianco, J. Rejent, and A. Kilgo, J. Electron. Mater. 33, 1473 (2004).CrossRefADSGoogle Scholar
  31. 31.
    Y. Fukuda (PhD. Thesis, University of Maryland, College Park, MD, 2005).Google Scholar
  32. 32.
    J. Cheng (University of Rochester, 2008), unpublished data Google Scholar
  33. 33.
    C. Sellars, Philos. Trans. R. Soc. Lond. A 288, 147 (1978).CrossRefADSGoogle Scholar
  34. 34.
    M. Wahabi, L. Gavard, F. Montheillet, J. Cabrera, and J.␣Prado, Acta Mater. 53, 4605 (2005).CrossRefGoogle Scholar
  35. 35.
    W. Choi, G. Galyon, K. Tu, and T. Lee, Handbook of Lead-Free Solder Technology for Microelectronic Applications, ed.␣K. Puttlitz and K. Stalter (New York, NY: Marcel- Dekker, 2004), pp. 851–913.Google Scholar
  36. 36.
    R. McLellan, C. Ko, and F. Brotzen, Acta Metall. Mater. 38, 2161 (1990).CrossRefGoogle Scholar
  37. 37.
    D. Yeh and H. Huntington, Phys. Rev. Lett. 53, 1469 (1984).CrossRefADSGoogle Scholar
  38. 38.
    H. Nakajima and M. Koiwa, ISIJ Int. 31, 757 (1991).CrossRefGoogle Scholar
  39. 39.
    P. Vianco, J. Rejent, G. Zender, and A. Kilgo, J. Mater. Res. 20, 1563 (2005).CrossRefADSGoogle Scholar
  40. 40.
    C. Ning and Y. Zongsen, J. Mater. Sci. Lett. 14, 557 (1995).CrossRefGoogle Scholar
  41. 41.
    Y. Kamon, H. Harima, A. Yanase, and H. Katayama- Yoshida, Physica B 308–310, 391 (2001).CrossRefGoogle Scholar
  42. 42.
    G. Vogl, W. Mickeley, A. Heidemann, and W. Petry, Phys. Rev. Lett. 53, 934 (1984).CrossRefADSGoogle Scholar
  43. 43.
    J. Hwang and R. Balluffi, Scr. Met. 12, 709 (1978).CrossRefGoogle Scholar
  44. 44.
    W. Boas and P. Fensham, Nature 164, 1127 (1949).CrossRefADSGoogle Scholar
  45. 45.
    F. Haessner, ed., Recrystallization of Metallic Materials (Stuttgart, Germany: Riederer Verlag GmbH, 1978), p. 67.Google Scholar
  46. 46.
    G. Martin and B. Perraillon, Grain Boundary Structure and Kinetics (Materials Park, OH: ASM, Inter., 1980), p. 280.Google Scholar
  47. 47.
    B. Gupta, M. Madhuri, and S. Gupta, Acta Mater. 51, 4991 (2003).CrossRefGoogle Scholar
  48. 48.
    C. Ma and W. Gust, Scr. Met. 30, 509 (1994).CrossRefGoogle Scholar
  49. 49.
    F. Den Broeder, M. Klerk, J. Vandenberg, and R. Hamm, Acta Met. 31, 285 (1983).CrossRefGoogle Scholar
  50. 50.
    F. Yang and J. Li, J. Mater. Sci. 18, 191 (2007).Google Scholar
  51. 51.
    J. Weertman, J. Appl. Phys. 28, 196 (1955).CrossRefADSGoogle Scholar
  52. 52.
    J. Breen and J. Weertman, J. Met. 72, 1230 (1955).Google Scholar
  53. 53.
    P. Shewmon, Diffusion in Solids, 2nd ed. (Warrendale, PA: TMS, 1989), pp. 189–199.Google Scholar
  54. 54.
    L. Bonar and G. Craig, Can. J. Phys. 36, 1445 (1958).ADSGoogle Scholar
  55. 55.
    P. Adeva, G. Caruana, O. Ruano, and M. Torralba, Mater. Sci. Eng. A 194, 17 (1995).CrossRefGoogle Scholar
  56. 56.
    C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, and S. Jadhav, J. Mater. Sci. 42, 5182 (2007).CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations