Journal of Electronic Materials

, Volume 38, Issue 10, pp 2052–2062 | Cite as

On the Mechanisms Governing Aluminum-Mediated Solid-Phase Epitaxy of Silicon

  • Yann Civale
  • Guglielmo Vastola
  • Lis K. Nanver
  • Rani Mary-Joy
  • Jae-Ryoung Kim
Open Access

Mechanisms governing the aluminum-mediated solid-phase epitaxy of Si on patterned crystalline Si substrates have been identified by studying the deposited material as a function of growth conditions when varying parameters such as temperature, growth time, and layer-stack properties. Early growth stages can be discerned as first formation of “free” Si at the Al/α-Si interface, then diffusion of Si along the Al grain boundaries, nucleation at the Si substrate surface, nuclei rearrangement, and finally crystal growth. The acquired understanding is applied to control the selectivity and completeness of single-crystal growth in various sizes of contact windows to the Si substrate.


Aluminum doping aluminum-induced crystallization layer-exchange mechanisms low-temperature doping p+n diodes silicon crystal growth silicon epitaxy solid-phase epitaxy 



The authors would like to thank the staff of the DIMES-ICP cleanrooms for their continual support. G. Vastola also acknowledges fruitful discussions with Prof. L. Miglio and F. Montalenti. This research is supported by the Dutch Foundation for Fundamental Research on Matter (Stichting FOM) and performed in cooperation with the EU-FP6 project D-DotFET.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    S.W. Lee and S.K. Joo, IEEE Electron. Dev. Lett. 17, 160 (1996).CrossRefADSGoogle Scholar
  2. 2.
    O. Nast, S. Brehme, D.H. Neuhaus, and S.R. Wenham, IEEE Trans. Electron. Dev. 46, 2062 (1999).CrossRefADSGoogle Scholar
  3. 3.
    C. Spinella and S. Lombardo, J. Appl. Phys. 84, 5383 (1998).CrossRefADSGoogle Scholar
  4. 4.
    H. Qingheng, E.S. Yang, and H. Izmirliyan, Solid Stat Electron. 5, 1187 (1982).CrossRefADSGoogle Scholar
  5. 5.
    J.Y. Wang, D. He, Y.H. Zhao, and E.J. Mittemeijer, Appl. Phys. Lett. 88, 19101 (2006).Google Scholar
  6. 6.
    O. Nast and A.J. Hartmann, J. Appl. Phys. 88, 716 (2000).CrossRefADSGoogle Scholar
  7. 7.
    A. Sarikov, J. Schneider, M. Muske, S. Gall, and W. Fuhs, J. Non-Cryst. Solids 352, 980 (2006).CrossRefADSGoogle Scholar
  8. 8.
    Y. Civale, L.K. Nanver, P. Hadley, E.J.G. Goudena, and H. Schellevis, IEEE Electron. Dev. Lett. 27, 341 (2006).CrossRefADSGoogle Scholar
  9. 9.
    Y. Civale, L.K. Nanver, and H. Schellevis, IEEE Trans. Nanotechnol. 6, 196 (2007).CrossRefADSGoogle Scholar
  10. 10.
    Y. Civale, L.K. Nanver, S.G. Alberici, A. Gammon, and I. Kelly, Electrochem. Solid State Lett. 11, H74 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Schneider, A. Sarikov, J. Klein, M. Muske, I. Sieber, T. Quinn, H.S. Reehal, S. Gall, and W. Fuhs, J. Cryst. Growth 287, 423 (2006).CrossRefADSGoogle Scholar
  12. 12.
    A. Hiraki, Surf. Sci. 168, 74 (1986).CrossRefADSGoogle Scholar
  13. 13.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).CrossRefADSGoogle Scholar
  14. 14.
    D. He, J.Y. Wang, and E.J. Mittemeijer, Appl. Surf. Sci. 252, 5470 (2006).CrossRefADSGoogle Scholar
  15. 15.
    D. He, J.Y. Wang, and E.J. Mittemeijer, J. Appl. Phys. 97, 93524 (2005).CrossRefGoogle Scholar
  16. 16.
    D.W. Pashley, Adv. Phys. 14, 327 (1965).CrossRefADSGoogle Scholar
  17. 17.
    J. Tersoff, Phys. Rev. B. 38, 9902 (1988).CrossRefADSGoogle Scholar
  18. 18.
    L. Csepregi, E.F. Kennedy, J.W. Mayer, and T.W. Sigmon, J. Appl. Phys. 49, 3906 (1978).CrossRefADSGoogle Scholar
  19. 19.
    R. Drosd and J. Washburn, J. Appl. Phys. 53, 397 (1982).CrossRefADSGoogle Scholar
  20. 20.
    G. Wulff, Z. Kristallogr. 34, 449 (1901).Google Scholar
  21. 21.
    A. Bavard, J. Eymery, A. Pascale, and F. Fournel, Phys. Status Solidi B 243, 3963 (2006).CrossRefGoogle Scholar
  22. 22.
    Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000).PubMedCrossRefADSGoogle Scholar
  23. 23.
    Y. Civale, L.K. Nanver, P. Hadley, H.W. van Zeijl, E.J.G. Goudena, and H. Schellevis. Proceedings of Materials Research Society Spring Meeting, San Francisco, CA, USA, 0940-P05-04 (2006).Google Scholar
  24. 24.
    O. Nast and A.J. Hartmann, J. Appl. Phys. 88, 716 (2000).CrossRefADSGoogle Scholar
  25. 25.
    O. Nast and S. Wenham, J. Appl. Phys. 88, 124 (2000).CrossRefADSGoogle Scholar
  26. 26.
    G. Pandraud, T.M. Koster, C. Gui, M. Dijkstra, A. Van den Berg, and P.V. Lambeck, Sens. Actuators 85, 158 (2000).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Yann Civale
    • 1
  • Guglielmo Vastola
    • 2
  • Lis K. Nanver
    • 1
  • Rani Mary-Joy
    • 1
  • Jae-Ryoung Kim
    • 3
  1. 1.Laboratory of Electronic Components, Technology and Materials, Delft Institute of Microsystems and Nanoelectronics (DIMES)Delft University of TechnologyDelftThe Netherlands
  2. 2.L-NESS and Department of Materials ScienceMilano-Bicocca UniversityMilanItaly
  3. 3.Molecular Electronics and Devices, Kavli Institute of Nanoscience DelftDelft University of TechnologyDelftThe Netherlands

Personalised recommendations