Journal of Electronic Materials

, Volume 38, Issue 10, pp 2033–2045 | Cite as

Thermodynamic Descriptions for the Cd-Te, Pb-Te, Cd-Pb and Cd-Pb-Te Systems

Article

The thermodynamic behaviors of the Cd-Te, Pb-Te, Cd-Pb and Cd-Pb-Te systems are critically analyzed in this work by means of the calculation of phase diagrams (CALPHAD) method. The liquid phases containing Te are described by the associated solution model, which is capable of dealing with V-shaped curves of mixing enthalpies in solution phases, sharp maxima of liquidus curves in phase diagrams, and abrupt changes in activity plots. The binary compounds, CdTe and PbTe, are considered to be stoichiometric in the two binary systems, but they form a line compound described by (Cd,Pb)1(Te)1 in the ternary system. The fcc phase, in which only Cd and Pb elements are present, is treated with the substitutional solution model. The experimental data available in the literature are extensively assessed, from which the thermodynamic parameters necessary for each phase are obtained. Various calculated phase equilibria and thermodynamic properties are compared with the experimental data. The excellent agreement indicates that this work contributes to the study of phase stabilities in the Cd-Pb-Te system.

Keywords

Cd-Te Pb-Te Cd-Pb Cd-Pb-Te thermodynamics calculation of phase diagrams (CALPHAD) associated solution model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Leitsmann, F. Bechstedt, H. Groiss, F. Schäffler, W. Heiss, K. Koike, H. Harada, and M. Yano, Appl. Surf. Sci. 254, 397 (2007).CrossRefADSGoogle Scholar
  2. 2.
    M. Yano, I. Makabe, and K. Koike, Physica E 20, 449 (2004).CrossRefADSGoogle Scholar
  3. 3.
    P. Dziawa, B. Taliashvili, W. Domuchowski, L. Kowalczyk, E. Lusakowska, A. Mycielski, V. Osinniy, and T. Story, Phys. Status Solidi C 2, 1167 (2005).CrossRefADSGoogle Scholar
  4. 4.
    F. Sommer, CALPHAD 2, 319 (1978).CrossRefGoogle Scholar
  5. 5.
    L.S. Darken, Trans. AIME 239, 80 (1967).Google Scholar
  6. 6.
    R.C. Sharma and Y.A. Chang, Bull. Alloy Phase Diagrams 10, 334 (1989).CrossRefGoogle Scholar
  7. 7.
    A. Halimi and M.S. Ferah, Int. J. Microstruct. Mater. Prop. 3, 77 (2008).CrossRefGoogle Scholar
  8. 8.
    K. Yamaguchi, K. Hongo, K. Hack, I. Hurtado, and D. Neuschütz, Mater. Trans. JIM 41, 790 (2000).Google Scholar
  9. 9.
    Y.L. Kharif, P.V. Kovtunenko, A.A. Maier, and I.K. Avetisov, Russ. J. Phys. Chem. 56, 1331 (1982).Google Scholar
  10. 10.
    J.C. Lin, K.C. Hsieh, R.C. Sharma, and Y.A. Chang, Bull. Alloy Phase Diagrams 10, 340 (1989).CrossRefGoogle Scholar
  11. 11.
    W. Zakulski and Z. Moser, J. Phase Equilib. 16, 239 (1995).CrossRefGoogle Scholar
  12. 12.
    M. Kobayashi, Z. Anorg. Chem. 69, 1 (1911).CrossRefGoogle Scholar
  13. 13.
    W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young, J. Phys. Chem. Solids 9, 325 (1959).CrossRefADSGoogle Scholar
  14. 14.
    D. DeNobel, Philips Res. Rep. 14, 361 (1959).Google Scholar
  15. 15.
    M.R. Lorenz, J. Phys. Solids 23, 939 (1962).CrossRefADSGoogle Scholar
  16. 16.
    B.M. Kulwicki (Ph.D. thesis, The University of Michigan, Ann Arbor, Michigan, USA, 1963).Google Scholar
  17. 17.
    J. Steininger, A.J. Strauss, and R.F. Brebrick, J. Appl. Phys. 117, 1305 (1970).Google Scholar
  18. 18.
    R.F. Brebrick, J. Electrochem. Soc. 118, 2014 (1971).CrossRefGoogle Scholar
  19. 19.
    A.S. Tomson, A.A. Davydov, and S.M. Grigorovich, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 1905 (1972).Google Scholar
  20. 20.
    D.R. Mason and D.F. O’Kane, Preparation and Properties of Some Peritectic Semiconducting Compounds (New York, NY: Academic Press, 1961).Google Scholar
  21. 21.
    S.D. Gromakov, I.V. Zoroatskaya, Z.M. Latypov, M.A. Chvala, E.A. Eidelman, L.I. Badysina, and L.G. Zaripova, Z.␣Neorg. Khim. 9, 2485 (1964).Google Scholar
  22. 22.
    L.A. Sysoev, E.K. Raiskin, and V.R. Gur′ev, Izv. Akad. Nauk SSSR, Neorg. Mater. 3, 390 (1967).Google Scholar
  23. 23.
    M.J. Pool, Trans. AIME 23, 1711 (1965).Google Scholar
  24. 24.
    P.M. Robinson and J.S.LI. Leach, Trans. AIME 236, 818 (1966).Google Scholar
  25. 25.
    R. Agarwal, V. Venugopal, and D.D. Sood, J. Alloys Compd. 200, 93 (1993).CrossRefGoogle Scholar
  26. 26.
    J.H. McAteer and H. Seltz, J. Am. Chem. Soc. 58, 2081 (1936).CrossRefGoogle Scholar
  27. 27.
    M. Shamsuddin and A. Nasar, High Temp. Sci. 28, 245 (1990).Google Scholar
  28. 28.
    R.F. Brebrick and A.J. Strauss, J. Phys. Chem. Solids 25, 1441 (1964).CrossRefADSGoogle Scholar
  29. 29.
    P.M. Robinson and M.B. Bever, Trans. AIME 236, 814 (1966).Google Scholar
  30. 30.
    B.B. Rugg, N.J. Silk, A.W. Bryant, and B.B. Argent, CALPHAD 19, 389 (1995).CrossRefGoogle Scholar
  31. 31.
    A. Amzil, J.C. Mathieu, and R. Castanet, J. Alloys Compd. 256, 192 (1997).CrossRefGoogle Scholar
  32. 32.
    J. Terpilowski and E. Ratajzak, Bull. Acad. Pol. Sci. 12, 355 (1964).Google Scholar
  33. 33.
    L.A. Zabdyr, J. Electrochem. Soc. 131, 2157 (1984).CrossRefGoogle Scholar
  34. 34.
    I.V. Korneeva, A.V. Belayaev, and A.V. Novoselova, Inorg. Mater. 5, 1 (1960).Google Scholar
  35. 35.
    P. Goldfinger and M. Jeunehomme, Trans. Faraday Soc. 59, 2851 (1963).CrossRefGoogle Scholar
  36. 36.
    A.V. Vanyukov, A.A. Davydov, and A.S. Tomson, Russ. J. Phys. Chem. 43, 1324 (1969).Google Scholar
  37. 37.
    L.R. Shiozawa and J.M. Jost, Research on Improved II–VI Compounds, Final Technical Report, Clevite Corporation, Contract F33615-68-C-1601-P002, Project 7885 (August 1970).Google Scholar
  38. 38.
    T. Tung, L. Golonka, and R.F. Brebrick, J. Electrochem. Soc. 128, 1601 (1981).CrossRefGoogle Scholar
  39. 39.
    K.C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (London: Butterworth, 1974), pp. 51–76.Google Scholar
  40. 40.
    M. Kimura, Mem. Coll. Sci. Kyoto Univ. 1, 149 (1915).Google Scholar
  41. 41.
    B.E. Pelzel, Metallurgy 10, 717 (1956).Google Scholar
  42. 42.
    T.R.A. Davey, Physical Chemistry of Process Metallurgy (New York: AIME, Interscience Publishers, 1961), pp. 581–600.Google Scholar
  43. 43.
    W. Lugscheider, H. Ebel, and G. Langer, Z. Metallkd. 56, 851 (1965).Google Scholar
  44. 44.
    E. Miller and K.L. Komarek, Trans. AIME 236, 832 (1966).Google Scholar
  45. 45.
    J.S. Harris, J.T. Longo, E.R. Gertner, and J.E. Clarke, J.␣Cryst. Growth 28, 334 (1975).CrossRefADSGoogle Scholar
  46. 46.
    N. Moniri and C. Petot, J. Calorim. Anal. Thermodyn. 9B, 195 (1978).Google Scholar
  47. 47.
    A.P. Petukkov, Y.V. Andreev, and A.O. Olesk, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 272 (1980).Google Scholar
  48. 48.
    T.L. Ngai, D. Marshall, R.C. Sharma, and Y.A. Chang, Monatsh. Chem. 118, 277 (1987).CrossRefGoogle Scholar
  49. 49.
    H. Fay and C.B. Gillson, Am. Chem. J. 27, 81 (1902).Google Scholar
  50. 50.
    J.N. Greenwood and H.W. Worner, J. Inst. Metals 115, 435 (1939).Google Scholar
  51. 51.
    R. Blachnik and B. Gather, J. Less Common Met. 92, 207 (1983).CrossRefGoogle Scholar
  52. 52.
    B. Predel, J. Piehl, and M.J. Pool, Z. Metallkd. 66, 347 (1975).Google Scholar
  53. 53.
    B. Fuglevicz, Pol. J. Chem. 58, 983 (1984).Google Scholar
  54. 54.
    R. Castanet, Y. Claire, and M. Laffitte, High Temp.–High Pressures 4, 343 (1972).Google Scholar
  55. 55.
    C.T. Heycock and F.H. Neville, J. Chem. Soc. 65, 65 (1894).Google Scholar
  56. 56.
    E. Jaenecke, Z. Phys. Chem. 60, 339 (1907).Google Scholar
  57. 57.
    A. Stoffel, Z. Anorg. Chem. 53, 137 (1907).CrossRefGoogle Scholar
  58. 58.
    W.E. Barlow, Z. Anorg. Chem. 70, 178 (1911).CrossRefGoogle Scholar
  59. 59.
    J. Goebel, Z. Metallkd. 14, 388 (1923).Google Scholar
  60. 60.
    E. Abel, O. Redich, and J. Adler, Z. Anorg. Chem. 174, 257 (1928).CrossRefGoogle Scholar
  61. 61.
    E. Jenckel and H. Maeder, Metallwirtschaft 16, 449 (1937).Google Scholar
  62. 62.
    E.C. Rollason, J. Inst. Metals 63, 191 (1938).Google Scholar
  63. 63.
    A. Pasternak, Bull. Acad. Pol. Sci. A. Sci. Mater. 17, 192 (1951).Google Scholar
  64. 64.
    E. Schuermann, Arch. Eisenhüttenwes 30, 103 (1959).Google Scholar
  65. 65.
    Z. Wojtaszek and J. Dubowy, Zesz. Nauk, U. J. Mat. Fiz. Chem. 5, 2 (1959).Google Scholar
  66. 66.
    J.F. Elliott and J. Chipman, Trans. Faraday Soc. 47, 138 (1951).CrossRefGoogle Scholar
  67. 67.
    Z. Kozuka and J. Moriyama, J. Min. Metall. Inst. Jpn. 80, 887 (1964).Google Scholar
  68. 68.
    Z. Moser, K. Fitzner, and L. Zabdyr, Rev. Roum. Chim. 18, 557 (1973).Google Scholar
  69. 69.
    L. Zabdyr, Arch. Hutn. 18, 209 (1973).Google Scholar
  70. 70.
    L. Schuffenecker, D. Balesdent, and J. Houriez, Thermochim. Acta 38, 89 (1980).CrossRefGoogle Scholar
  71. 71.
    L. Schuffenecker, D. Balesdent, and J. Houriez, J. Chem. Thermodyn. 12, 1157 (1980).CrossRefGoogle Scholar
  72. 72.
    F.J. Nazareth and E.H. Baker, High Temp.–High Pressures 15, 565 (1983).Google Scholar
  73. 73.
    M. Kawakami, Z. Anorg. Chem. 167, 345 (1927).CrossRefGoogle Scholar
  74. 74.
    O.J. Kleppa, J. Phys. Chem. 59, 354 (1955).CrossRefGoogle Scholar
  75. 75.
    W. Oelsen, E. Shumann, H.J. Weigt, and O. Oelsen, Arch. Eisenhüttenwes 8, 487 (1956).Google Scholar
  76. 76.
    J. Rosenberg, R. Grierson, J.C. Woolley, and P. Nikolic, Trans. AIME 230, 342 (1964).Google Scholar
  77. 77.
    G. Morgant, B. Legendre, and C. Souleau, Bull. Soc. Chim. Fr. 3–4, 133 (1980).Google Scholar
  78. 78.
    A.J. Crocker, J. Mater. Sci. 3, 534 (1968).CrossRefADSGoogle Scholar
  79. 79.
    H. Tai and S. Hori, J. Jpn. Inst. Met. 38, 451 (1974).Google Scholar
  80. 80.
    Z.F. Tomashik and V.N. Tomashik, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 1722 (1982).Google Scholar
  81. 81.
    T. Hirai and K. Kurata, Trans. Jpn. Inst. Met. 9, 301 (1968).Google Scholar
  82. 82.
    A. Dinsdale, CALPHAD 15, 317 (1991).CrossRefGoogle Scholar
  83. 83.
    R. Schmid, Y. Chuang, and Y.A. Chang, CALPHAD 9, 383 (1985).CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Western Transportation InstituteMontana State UniversityBozemanUSA
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaP.R. China
  3. 3.American Water Chemicals, Inc.TampaUSA

Personalised recommendations