Journal of Electronic Materials

, Volume 38, Issue 9, pp 1926–1930 | Cite as

Amorphization and Solid-Phase Epitaxial Growth of C-Cluster Ion-Implanted Si

  • N.G. Rudawski
  • L.R. Whidden
  • V. Craciun
  • K.S. Jones
Open Access
Article

Abstract

Amorphization and solid-phase epitaxial growth were studied in C-cluster ion-implanted Si. C7H7 ions were implanted at a C-equivalent energy of 10 keV to C doses of 0.1 × 1015 cm−2 to 8.0 × 1015 cm−2 into (001) Si wafers. Transmission electron microscopy revealed a C amorphizing dose of ~5.0 ×  1014 cm−2. Annealing of amorphized specimens to effect solid-phase epitaxial growth resulted in defect-free growth for C doses of 0.5 × 1015 cm−2 to 1.0 × 1015 cm−2. At higher doses, growth was defective and eventually polycrystalline due to induced in-plane tensile stress from substitutional C incorporation.

Keywords

Cluster-ion implantation Si amorphization strain stress  solid-phase epitaxial growth 

Notes

Acknowledgements

The authors acknowledge the Semiconductor Research Corporation for funding this research. The␣Major Analytical Instrumentation Center at the University of Florida is acknowledged for use of the focused ion beam, x-ray diffraction, and transmission electron microscope facilities.

References

  1. 1.
    International Technology Roadmap for Semiconductors (2008), pp. 33.Google Scholar
  2. 2.
    K. Goto, J. Matsuo, Y. Tada, T. Sugii, and I. Yamada, IEEE Trans. Electron. Dev. 46, 683 (1999). doi: 10.1109/16.753701.CrossRefADSGoogle Scholar
  3. 3.
    K.S. Jones, S. Prussin, and E.R. Weber, Appl. Phys. A 45, 1 (1988). doi: 10.1007/BF00618760.CrossRefADSGoogle Scholar
  4. 4.
    X. Lu, L. Shao, X. Wang, J. Liu, W.-K. Chu, J. Bennet, L. Larson, and P. Ling, J. Vac. Sci. Tech. B 20, 992 (2002). doi: 10.1116/1.1479361.CrossRefGoogle Scholar
  5. 5.
    Y. Kawasaki, T. Kuroi, T. Yamashita, K. Horita, T. Hayashi, M. Ishibashi, M. Togawa, Y. Ohno, M. Yoneda, T. Horsky, D. Jacobson, and W. Krull, Nucl. Instrum. Methods Phys. Res. B 237, 25 (2005). doi: 10.1016/j.nimb.2005.04.073.CrossRefADSGoogle Scholar
  6. 6.
    D. Takeuchi, N. Shimada, J. Matsuo, and I. Yamada, Nucl. Instrum. Methods Phys. Res. B 121, 345 (1997). doi: 10.1016/S0168-583X(96)00451-X.CrossRefADSGoogle Scholar
  7. 7.
    K. Goto, J. Matsuo, T. Sugii, H. Minakata, I. Yamada, and T. Hisatsugu, IEDM Tech. Dig. 435 (1996). doi: 10.1109/IEDM.1996.553620
  8. 8.
    Y. Hada, Physica B 340–342, 1036 (2003). doi: 10.1016/j.physb.2003.09.193.CrossRefGoogle Scholar
  9. 9.
    I. Yamada, J. Matsuo, N. Toyoda, and A. Kirkpatrick, Mater. Sci. Eng. R. Rep. 34, 231 (2001).CrossRefGoogle Scholar
  10. 10.
    T. Seki, J. Matsuo, G.H. Takaoka, and I. Yamada, Nucl. Instrum. Methods Phys. Res. B 206, 902 (1997). doi: 10.1016/S0168-583X(03)00896-6.CrossRefADSGoogle Scholar
  11. 11.
    P.A. Stolk, D.J. Eaglesham, H.J. Gossmann, and J.M. Poate, Appl. Phys. Lett. 66, 1370 (1995). doi: 10.1063/1.113204.CrossRefADSGoogle Scholar
  12. 12.
    H. Rucker, B. Heinemann, W. Ropke, R. Kurps, D. Kruger, G. Lippert, and H.J. Osten, Appl. Phys. Lett. 73, 1682 (1998). doi: 10.1063/1.122244.CrossRefADSGoogle Scholar
  13. 13.
    S. Nishikawa, A. Tanaka, and T. Yamaji, Appl. Phys. Lett. 60, 2270 (1992). doi: 10.1063/1.107051.CrossRefADSGoogle Scholar
  14. 14.
    P.R. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala, and R. Wise, IEEE Trans. Electron. Dev. 53, 944 (2006). doi: 10.1109/TED.2006.872912.CrossRefADSGoogle Scholar
  15. 15.
    M.V. Fischetti and S.E. Laux, J. Appl. Phys. 80, 2234 (1996). doi: 10.1063/1.363052.CrossRefADSGoogle Scholar
  16. 16.
    M.M. Reiger and P. Vogl, Phys. Rev. B 48, 14276 (1993). doi: 10.1103/PhysRevB.48.14276.CrossRefADSGoogle Scholar
  17. 17.
    K.S. Jones, D.K. Sadana, S. Prussin, J. Washburn, E.R. Weber, and W.J. Hamilton, J. Appl. Phys. 63, 1414 (1988). doi: 10.1063/1.341122.CrossRefADSGoogle Scholar
  18. 18.
    F.C. Frank and J.H. van der Merwe, Proc. R. Soc. London A 198, 205 (1949). doi: 10.1098/rspa.1949.0095.MATHCrossRefADSGoogle Scholar
  19. 19.
    M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).Google Scholar
  20. 20.
    I.N. Stranski and L. Von Krastanow, Akad. Wiss. Lit. Mainz Math.-Natur. K1. IIb 146, 797 (1939).Google Scholar
  21. 21.
    N.G. Rudawski, K.S. Jones, and R. Gwilliam, Appl. Phys. Lett. 91, 172103 (2007). doi: 10.1063/1.2801518.CrossRefADSGoogle Scholar
  22. 22.
    N.G. Rudawski, K.S. Jones, and R. Gwilliam, Phys. Rev. Lett. 100, 165501 (2008). doi: 10.1103/PhysRevLett.100.165501.PubMedCrossRefADSGoogle Scholar
  23. 23.
    N.G. Rudawski, K.S. Jones, and R. Gwilliam, Mater. Sci. Eng. R. Rep. 61, 40 (2008).CrossRefGoogle Scholar
  24. 24.
    N.G. Rudawski, K.S. Jones, and R. Gwilliam, Appl. Phys. Lett. 92, 232110 (2008). doi: 10.1063/1.2945291.CrossRefADSGoogle Scholar
  25. 25.
    J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219–220, 1027 (2003). doi: 10.1016/j.nimb.2004.01.208.Google Scholar
  26. 26.
    L. Vegard, Z. Phys. 5, 17 (1921). doi: 10.1007/BF01349680.CrossRefADSGoogle Scholar
  27. 27.
    J.J. Wortman and R.A. Evans, J. Appl. Phys. 36, 153 (1965). doi: 10.1063/1.1713863.CrossRefADSGoogle Scholar
  28. 28.
    J.W. Strane, S.R. Lee, H.J. Stein, S.T. Picraux, J.K. Watanabe, and J.W. Mayer, J. Appl. Phys. 79, 637 (1996). doi: 10.1063/1.360806.CrossRefADSGoogle Scholar
  29. 29.
    G.F. Cerofolini, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, and R. Tonni, Mater. Sci. Eng. R. Rep. 27, 1 (2000).CrossRefGoogle Scholar
  30. 30.
    X. Lu, N.W. Cheung, M.D. Strathman, P.K. Chu, and B. Doyle, Appl. Phys. Lett. 71, 1804 (1997). doi: 10.1063/1.119404.CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • N.G. Rudawski
    • 1
  • L.R. Whidden
    • 1
  • V. Craciun
    • 1
  • K.S. Jones
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations