The Interaction Between an Imposed Current and the Creep of Idealized Sn-Ag-Cu Solder Interconnects

  • Christopher Kinney
  • Tae-Kyu Lee
  • Kuo-Chuan Liu
  • J. W. Morris
Open Access

The work reported here concerns the effect of an imposed current on the creep of simple Sn-Ag-Cu interconnects. The samples employed were double-shear specimens that contained paired solder joints, 400 μm × 400 μm in cross-section, 200 μm in thickness, on Cu. Different representative microstructures were prepared by electromigration and isothermal aging. Samples were tested with and without an imposed current, and at a variety of temperatures. These tests consistently yield two unexpected results. First, the relative increase in creep rate with current was nearly the same over a range of temperatures and variety of starting microstructures. Second, when tests were done at the same temperature (including the effect of Joule heating), the rate of creep was lower under imposed current than under isothermal conditions. These results are explained in the light of new data that show that the temperature within the joint is almost constant, even under a relatively high current density of 5500 A/cm2. Given constant temperature and a microstructure that includes interfacial voids, the current depletes the joint of vacancies, lowering the␣average creep rate, and introducing observable heterogeneities in the creep pattern. The usual Dorn equation then provides a very useful basis for evaluating the change of creep rate with current.


Sn-Ag-Cu current creep electromigration interconnects vacancy gradients 



This research was supported by the Component Quality and Technology Group, Cisco Systems.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Kinney C., Morris J.W., Lee T.K., Liu K.C., Jie X., Towne D. (2009) JEM 38, 221-226 doi: 10.1007/s11664-008-0568-3 CrossRefADSGoogle Scholar
  2. 2.
    Lee T.K., Hua F, Morris J.W. (2006) Electron. Mater. Lett. 2, 157-160 Google Scholar
  3. 3.
    Yamanaka K, Tsukada Y, Suganuma K. (2007) Microelectron Reliab. 47, 1280-1287. doi: 10.1016/j.microrel.2006.09.028 CrossRefGoogle Scholar
  4. 4.
    Song H.G., Morris J.W., Hua F. (2002) JOM 54, 30-32. doi: 10.1007/BF02701846 CrossRefGoogle Scholar
  5. 5.
    Park S, Dhakal R, Lehman L, Cotts E. (2007) Acta Mater. 55, 3253-3260. doi: 10.1016/j.actamat.2007.01.028 CrossRefGoogle Scholar
  6. 6.
    Sundelin J, Nurmi S, Lepisto T, Ristolainen E. (2006) Mater Sci Eng. 420, 55-62. doi: 10.1016/j.msea.2006.01.065 CrossRefGoogle Scholar
  7. 7.
    Wiese S, Wolter K.-J. (2004) Microelectron Reliab. 44, 1923-1931. doi: 10.1016/j.microrel.2004.04.016 CrossRefGoogle Scholar
  8. 8.
    Wiese S, Wolter K.-J. (2007) Microelectron Reliab. 47, 223-232. doi: 10.1016/j.microrel.2006.09.006 CrossRefGoogle Scholar
  9. 9.
    W. Peng, E. Monlevade, and M. Marques, Microelectron. Reliab. 47, 2161 (2007).Google Scholar
  10. 10.
    Huntington H.B., Grone A.R. (1961) J. Phys. Chem. Solids 20, 76-87. doi: 10.1016/0022-3697(61)90138-X CrossRefADSGoogle Scholar
  11. 11.
    Blech I.A., (1972) Thin Solid Films, 13, 117-129. doi: 10.1016/0040-6090(72)90164-2 CrossRefADSGoogle Scholar
  12. 12.
    Blech I.A., (1998) Acta mater. 46, 3717-3723. doi: 10.1016/S1359-6454(97)00446-1 CrossRefGoogle Scholar
  13. 13.
    Dorn J.E. (1954) J. Mech. Phys. Solids 3, 85CrossRefADSGoogle Scholar
  14. 14.
    Harper J, Dorn J.E. (1957) Acta Metal 5, 654. doi: 10.1016/0001-6160(57)90112-8 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Christopher Kinney
    • 1
  • Tae-Kyu Lee
    • 2
  • Kuo-Chuan Liu
    • 2
  • J. W. Morris
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Component Quality and Technology GroupCisco SystemsSan JoseUSA

Personalised recommendations