Journal of Electronic Materials

, Volume 38, Issue 6, pp 725–730 | Cite as

Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity

  • Shriram Shivaraman
  • M. V. S. Chandrashekhar
  • John J. Boeckl
  • Michael G. Spencer
Article

Abstract

A simple, noninvasive method using Raman spectroscopy for the estimation of the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is presented, enabling simultaneous determination of thickness, grain size, and disorder using the spectra. The attenuation of the substrate Raman signal due to the graphene overlayer is found to be dependent on the graphene film thickness deduced from x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) of the surfaces. We explain this dependence using an absorbing overlayer model. This method can be used for mapping graphene thickness over a region and is capable of estimating thickness of multilayer graphene films beyond that possible by XPS and Auger electron spectroscopy (AES).

Keywords

Graphene thickness estimation Raman intensity mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004). doi:10.1126/science.1102896.PubMedCrossRefADSGoogle Scholar
  2. 2.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys., 81, 109 (2009). doi:10.1103/RevModPhys.81.109.CrossRefADSGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 438, 197 (2005). doi:10.1038/nature04233.PubMedCrossRefADSGoogle Scholar
  4. 4.
    Y. Zhang, Y. Tan, H. L. Stormer, P. Kim, Y. Zhang et. al., Nature, 438, 201 (2005). doi:10.1038/nature04235.PubMedCrossRefADSGoogle Scholar
  5. 5.
    K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007). doi:10.1126/science.1137201.PubMedCrossRefADSGoogle Scholar
  6. 6.
    F. Rana, IEEE Transactions on Nanotechnology, 7, 91 (2008). doi:10.1109/TNANO.2007.910334.CrossRefGoogle Scholar
  7. 7.
    G. Liang, N. Neophytou, D. E. Nikonov, M. S. Lundstrom, IEEE Trans. Elec. Dev., 54, 657 (2007). doi:10.1109/TED.2007.891872.CrossRefADSGoogle Scholar
  8. 8.
    J. R. Williams, L. DiCarlo, C. M. Marcus, Science, 317, 638 (2007). doi:10.1126/science.1144657.PubMedCrossRefADSGoogle Scholar
  9. 9.
    MC Lemme, TJ Echtermeyer, M Baus, H Kurz, IEEE Electron Device Letters, 28, 4, 284 (2007).CrossRefADSGoogle Scholar
  10. 10.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nature Materials 6, 652 (2007). doi:10.1038/nmat1967.PubMedCrossRefADSGoogle Scholar
  11. 11.
    C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004). doi:10.1021/jp040650f.CrossRefGoogle Scholar
  12. 12.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E.H. Conrad, P. N. First, W. A. de Heer, Science, 312, 1191 (2006). doi:10.1126/science.1125925.PubMedCrossRefADSGoogle Scholar
  13. 13.
    J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana and M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008). doi:10.1063/1.2837539.CrossRefADSGoogle Scholar
  14. 14.
    D. Sun, Z. Wu, C. Divin, X. Li, C. Berger, W.A. de Heer, P. First, and T. Norris, arXiv:cond-mat/0803.2883 (2008).Google Scholar
  15. 15.
    E. Rollings, G.-H. Gweon, S. Zhou, B. Mun, J. McChesney, B. Hussain, A. Fedorov, P. First, W. de Heer, A. Lanzara, J. Phys. Chem. Solids 67, 2172 (2006). doi:10.1016/j.jpcs.2006.05.010.CrossRefADSGoogle Scholar
  16. 16.
    J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, and M.G. Spencer, arXiv:cond-mat/0801.3302 (2008).Google Scholar
  17. 17.
    S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 36, 1 (2004). doi:10.1002/sia.1601.CrossRefGoogle Scholar
  18. 18.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids (New York: Academic Press, 1991).Google Scholar
  19. 19.
    F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970). doi:10.1063/1.1674108.CrossRefADSGoogle Scholar
  20. 20.
    A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000). doi:10.1103/PhysRevB.61.14095.CrossRefADSGoogle Scholar
  21. 21.
    B. Hornetz, H-J. Michel and J. Halbritter, J. Mater. Res., 9, 12, 3088 (1994).CrossRefADSGoogle Scholar
  22. 22.
    P. J. Cumpson, Surface and Interface Analysis, 29, 403 (2000). doi:10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8.CrossRefGoogle Scholar
  23. 23.
    C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000). doi:10.1103/PhysRevLett.85.5214.PubMedCrossRefADSGoogle Scholar
  24. 24.
    J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, I. T. Ferguson, Phys. Rev. B, 59, 11, 7282 (1999).CrossRefADSGoogle Scholar
  25. 25.
    Yang Wu, Kin Fai Mak, Chun Hung Lui, Janina Maultzsch, Tony Heinz, Bul. of Am. Phys. Soc. 53, L29.00006 (2008).Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Shriram Shivaraman
    • 1
  • M. V. S. Chandrashekhar
    • 1
  • John J. Boeckl
    • 2
  • Michael G. Spencer
    • 1
  1. 1.School of Electrical and Computer EngineeringCornell UniversityIthacaUSA
  2. 2.Air Force Research LaboratoryWright-Patterson Air Force Base ExperimentalUSA

Personalised recommendations