Journal of Electronic Materials

, Volume 38, Issue 8, pp 1563–1567 | Cite as

Internal Electric Field Investigations of a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels Effect Measurements

  • G. Yang
  • A. E. Bolotnikov
  • G. S. Camarda
  • Y. Cui
  • A. Hossain
  • H. W. Yao
  • R. B. James
Article

Abstract

Cadmium zinc telluride (CZT) has remained a major focus of research due to its promising application as a room-temperature nuclear radiation detector material. Among the several parameters that substantially affect the detectors’ performance, an important one is the distribution of the internal electric field. Brookhaven National Laboratory (BNL) employed synchrotron x-ray microscale mapping and measurements of the Pockels effect to investigate the distribution of the internal electric field in a CZT strip detector. Direct evidence that dislocations can distort the internal electric field of the detector was obtained. Furthermore, it was found that “star” defects in the CZT crystal, possibly ascribed to dislocation loop punching, cause charge trapping.

Keywords

CdZnTe synchrotron x-ray microscale mapping Pockels effect internal electric field distribution dislocations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. James, T. E. Schlesinger, J. C. Lund, and M. Schieber, Semiconductors for Room Temperature Nuclear Detector Applications, Academic Press, New York, 1995, Vol. 43, p. 334.CrossRefGoogle Scholar
  2. 2.
    G. Yang, W. Jie, Q. Li, T. Wang, G. Q. Li, and H. Hua, J. Cryst. Growth 283, 431 (2005). doi: 10.1016/j.jcrysgro.2005.06.035.CrossRefADSGoogle Scholar
  3. 3.
    G.S. Camarda, A.E. Bolotnikov, Y. Cui, A. Hossain, S.A. Awadalla, J. Mackenzie, H. Chen, and R.B. James, IEEE Trans. Nucl. Sci. 55, 3725 (2008). doi: 10.1109/TNS.2008.2004707 Google Scholar
  4. 4.
    H. W. Yao, R. J. Anderson, and R. B. James, Proc. SPIE 3115, 62 (1997). doi: 10.1117/12.277705.CrossRefADSGoogle Scholar
  5. 5.
    A. Zumbiehl, M. Hage-Ali, P. Fougeres, J. M. Koebel, R. Regal, and P. Siffert, J. Cryst. Growth 197, 650 (1999). doi: 10.1016/S0022-0248(98)00764-7.CrossRefADSGoogle Scholar
  6. 6.
    R. Guenther, Modern Optics (New York: John Wiley & Sons, Inc., 1990), pp.␣569-590.Google Scholar
  7. 7.
    R. Andre, C. Bodin, J. Cibert, L.S. Dang and G. Feuillet, J. De Phys. IV, 3, 429 (1993). doi: 10.1051/jp4:1993592.CrossRefGoogle Scholar
  8. 8.
    W. J. Kim, M. J. Park, S. U. Kim, T. S. Lee, J. M. Kim, W. J. Song and S. H. Suh, J. Cryst. Growth 104, 677 (1990). doi: 10.1016/0022-0248(90)90011-9.CrossRefADSGoogle Scholar
  9. 9.
    S. H. Shin, J. Bajaj, L. A. Moudy and D. J. Chenny, Appl. Phy. Lett. 43, 68 (1983). doi: 10.1063/1.94123.CrossRefADSGoogle Scholar
  10. 10.
    M. Wada and J. Suzuki, Jpn. J. Appl. Phys. 27, L972 (1988). doi: 10.1143/JJAP.27.L972.CrossRefADSGoogle Scholar
  11. 11.
    A. W. Vere, S. Cole and D. J. Williams, J. Electron. Mater. 12, 551 (1983). doi: 10.1007/BF02650863.CrossRefADSGoogle Scholar
  12. 12.
    R.D.S. Yadava, R.K. Bagai, and W.N. Borle, J. Electron. Mater. 21, 1001 (1992). doi: 10.1007/BF02684210.Google Scholar
  13. 13.
    P.B. Hirsh, J. Inst. Met. 86, 7 (1957).Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • G. Yang
    • 1
  • A. E. Bolotnikov
    • 1
  • G. S. Camarda
    • 1
  • Y. Cui
    • 1
  • A. Hossain
    • 1
  • H. W. Yao
    • 1
  • R. B. James
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA

Personalised recommendations