Advertisement

Journal of Electronic Materials

, Volume 38, Issue 7, pp 1171–1175 | Cite as

Thermoelectric Properties of Organic Charge-Transfer Compounds

  • H. Itahara
  • M. Maesato
  • R. Asahi
  • H. Yamochi
  • G. Saito
Article

Abstract

We measured the thermoelectric (TE) properties of compressed pellets of various organic charge-transfer (CT) complexes, such as (TTF)(TCNQ), (BO)(TCNQ) and (ET)2(HCNAL), where TTF, TCNQ, BO, ET, and HCNAL represent tetrathiafulvalene, tetracyanoquinodimethane, bis(ethylenedioxy)-tetrathiafulvalene, bis(ethylenedithio)tetrathiafulvalene, and 2,5-dicyano- 3,6-dihydroxy-p-benzoquinone, respectively. The metallic (TTF)(TCNQ) and semiconducting (BO)(TCNQ) complexes showed Seebeck coefficients (S) of −18 μV/K and −30 μV/K at 300 K, respectively. On the contrary, the Mott insulator (ET)2(HCNAL) was found to show a rather high absolute S (−116 μV/K at 300 K), the magnitude of which is comparable to those of the conventional inorganic TE materials. With increasing temperature (170 K to 300 K), the electrical conductivity was increased about two orders of magnitude while the S value was nearly constant. These results suggest that S values could be determined mainly by spin entropy (configurations) of carriers in the Mott insulator (ET)2(HCNAL). The magnitude of the observed S value was compared with that derived from a theoretical model (generalized Heikes formula).

Keywords

Thermoelectric properties organic charge-transfer complex Mott insulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G. Kanatzidis, S.D. Mahanti, and T.P. Hogan, eds., Chemistry, Physics and Materials Science of Thermoelectic Materials (New York: Kluwer Academic/Plenum Publishers, 2003), pp. 1–17.Google Scholar
  2. 2.
    J.F. Kwak, P.M. Chaikin, A.A. Russel, A.F. Garito, A.J. Heeger. Solid State Commun. 16, 729–732 (1975) doi: 10.1016/0038-1098(75)90062-9.CrossRefADSGoogle Scholar
  3. 3.
    A. Casian, V. Dusciac, I. Coropceanu. Phys. Rev. B 66, 165404 (2002) doi: 10.1103/PhysRevB.66.165404.CrossRefADSGoogle Scholar
  4. 4.
    A. Casian, A.A. Balandin, V. Dusciac, and R. Dusciac, Proceedings of the 21st International Conference on Thermoelectircs (ICT2002), 2002, pp. 310–313.Google Scholar
  5. 5.
    H. Yoshino, G.C. Papavassiliou, K. Murata. J. Therm. Anal. Calorim. 92, 457–460 (2008) doi: 10.1007/s10973-007-8970-2.CrossRefGoogle Scholar
  6. 6.
    Md.B. Zaman, J. Toyoda, Y. Morita, S. Nakamura, H. Yamochi, G. Saito, K. Nishimura, N. Yoneyama, T. Enoki and K. Nakasuji. J. Mater. Chem. 11, 2211–2215 (2001) doi: 10.1039/b101635k.CrossRefGoogle Scholar
  7. 7.
    T. Suzuki, H. Yamochi, G. Srdanov, K. Hinkelmann, F. Wudl. J. Am. Chem. Soc. 111, 3108 (1989) doi: 10.1021/ja00190a079.CrossRefGoogle Scholar
  8. 8.
    K. Wallenfels, G. Bachmann, D. Hoffmann, R. Kern. Tetrahedron 21, 2239 (1965) doi: 10.1016/S0040-4020(01)93879-7.CrossRefGoogle Scholar
  9. 9.
    P.M. Chaikin, G. Beni. Phys. Rev. B 13(2), 647–651 (1976) doi: 10.1103/PhysRevB.13.647.CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • H. Itahara
    • 1
  • M. Maesato
    • 2
  • R. Asahi
    • 1
  • H. Yamochi
    • 3
  • G. Saito
    • 2
    • 3
  1. 1.Toyota Central R&D Labs., Inc.AichiJapan
  2. 2.Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Research Center for Low Temperature and Materials SciencesKyoto UniversityKyotoJapan

Personalised recommendations