Journal of Electronic Materials

, Volume 38, Issue 8, pp 1539–1547 | Cite as

Ab Initio Studies of Hydrogen Defects in CdTe



Using first-principles calculations based on density functional theory, we have investigated the nature of H defects in CdTe. The formation energy calculations indicate that the ground state position of the H inside the CdTe lattice depends on charge state: the lowest energy position for H0 and H+ is at the bond center site, while H prefers the tetrahedral interstitial site with Cd nearest neighbors (TCd). We find that H in CdTe acts as an amphoteric impurity. In p-type samples, H is in a positive charge state, acting as a donor to neutralize the free holes in the valence band, and in n-type samples H acquires an electron, compensating the donors in the sample.


Electronic structure hydrogen in CdTe defect formation energy DFT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. E. Schlesinger and R. B. James, Semiconductors for Room Temperature Nuclear Detector Applications, Semiconductors and Semimetals (Academic Press, San Diego, 1995) Vol. 43Google Scholar
  2. 2.
    C. S. Szeles, phys. stat. sol. b 241, 783 (2004)CrossRefADSGoogle Scholar
  3. 3.
    A. E. Bolotnikov, G. S. Camarda, G. A. Carini, M. Fiederle, L. Li, D. S. McGregor, W. McNeil, G. W. Wright, and R. B. James, IEEE Trans. Nucl. Sci. 53, 607 (2006). doi: 10.1109/TNS.2006.871509 CrossRefADSGoogle Scholar
  4. 4.
    G. A. Carini, A. E. Bolotnikov, G. S. Camarda, G. W. Wright, R. B. James, and L. Li, Appl. Phys. Lett. 88, 143515 (2006). doi: 10.1063/1.2189912 CrossRefADSGoogle Scholar
  5. 5.
    G. Koley, J. Liu and K. C. Mandal, Appl. Phys. Lett. 90, 102121 (2007). doi: 10.1063/1.2712496 CrossRefADSGoogle Scholar
  6. 6.
    K. C. Mandal, S. H. Kang, M. Choi, A. Kargar, M. J. Harrison, D. S. McGregor, A. E. Bolotnikov, G. A. Carini, C. G. Camarda, and R. B. James, IEEE Trans. Nucl. Sci. 54, 802 (2007). doi: 10.1109/TNS.2007.902371 CrossRefADSGoogle Scholar
  7. 7.
    K. C. Mandal, S. H. Kang, M. Choi, J. Wei, L. Zheng, H. Zhang, G. E. Jellison, M. Groza, and A. Burger, J. Electron. Mater. 36, 1013 (2007). doi: 10.1007/s11664-007-0164-y CrossRefADSGoogle Scholar
  8. 8.
    C. S. Szeles, Y. Y. Shan, K. G. Lynn, and A. R. Moodenbaugh, Phys. Rev. B 55, 6945 (1996). doi: 10.1103/PhysRevB.55.6945 CrossRefADSGoogle Scholar
  9. 9.
    N. Krsmanovic, K. G. Lynn, M. H. Weber, R. Tjossem, T. H. Gessmann, C. S. Szeles, E. E. Eissler, J. P. Flint, and H. L. Glass, Phys. Rev. B 62, R16279 (2000). doi: 10.1103/PhysRevB.62.R16279 CrossRefADSGoogle Scholar
  10. 10.
    S. A. Awallada, A. H. Hunt, K. G. Lynn, H. Glass, C. S. Szeles, and S.-H. Wei, Phys. Rev. B 69, 075210 (2004). doi: 10.1103/PhysRevB.69.075210 CrossRefADSGoogle Scholar
  11. 11.
    S. A. Awallada, K. G. Lynn, S.-H. Wei, and Cs. Szeles, Phys. Rev. B 70, 245213 (2004). doi: 10.1103/PhysRevB.70.245213 CrossRefADSGoogle Scholar
  12. 12.
    Q. Li, W. Jie, L. Fu, G. Yang, G. Zha, T. Wang, and D. Zeng, J. Appl. Phys. 100, 013518 (2006). doi: 10.1063/1.2213155 Google Scholar
  13. 13.
    S.-H Wei and S. B. Zhang, Phys. Rev. B 66, 155211 (2002). doi: 10.1103/PhysRevB.66.155211 CrossRefADSGoogle Scholar
  14. 14.
    Y.-C. Chang, R. B. James, and J. W. Davenport, Phys. Rev. B 73, 035211 (2006). doi: 10.1103/PhysRevB.73.035211 CrossRefADSGoogle Scholar
  15. 15.
    M.-H. Du, H. Takenaka and D. J. Singh, Phys. Rev. B 77, 094122 (2008). doi: 10.1103/PhysRevB.77.094122 CrossRefADSGoogle Scholar
  16. 16.
    J. I. Pankove and N. M. Johnson, Hydrogen in Semiconductors, Semiconductors and Semimetals (Academic Press, Boston, 1991) Vol. 34Google Scholar
  17. 17.
    C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. Lett. 60, 2761 (1988). doi: 10.1103/PhysRevLett.60.2761 PubMedCrossRefADSGoogle Scholar
  18. 18.
    C.G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, S. T. Pantelides, Phys. Rev. B 39, 10791 (1989). doi: 10.1103/PhysRevB.39.10791 CrossRefADSGoogle Scholar
  19. 19.
    C. Herring, N. M. Johnson, and C. G. Van de Walle, Phys. Rev. B 64, 125209 (2001). doi: 10.1103/PhysRevB.64.125209 CrossRefADSGoogle Scholar
  20. 20.
    S. Limpijumnong and C. G. VandeWalle, phys. stat. sol. b 228, 303 (2001).CrossRefADSGoogle Scholar
  21. 21.
    C. G. VandeWalle, Phys. Rev. Lett. 85, 1012 (2000). doi: 10.1103/PhysRevLett.85.1012 CrossRefADSGoogle Scholar
  22. 22.
    C. G. VandeWalle and J. Neugebauer, Nature 423, 626 (2003). doi: 10.1038/nature01665 PubMedCrossRefADSGoogle Scholar
  23. 23.
    A. Janotti and C. G. VandeWalle, Nature Materials 6, 44 (2007). doi: 10.1038/nmat1795 PubMedCrossRefADSGoogle Scholar
  24. 24.
    S. Shitharaman, R. Raman, L. Durai, S. Pal, M. Gautam, A. Nagpal, S. Kumar, S. N. Chatterjee, and S. C. Gupta, J. Cryst. Growth 285, 318 (2005). doi: 10.1016/j.jcrysgro.2005.08.038 CrossRefADSGoogle Scholar
  25. 25.
    J. Polit, A. Kisiel, A. Mycielski, A. Marcelli, E. Sheregii, J. Cebulski, M. Piccinini, M. Cestelli Guidi, B. V. Robouch, and A. Nucara, phys. stat. sol. (c) 2, 1147 (2005)CrossRefGoogle Scholar
  26. 26.
    P. Zajdel, A. Kisiel, J. Polit, B. V. Robouch, E. M. Sheregii, J. Warczewski, J. Cebulski, E. Burattini, A. Marcelli, M. Cestelli Guidi, M. Piccinini, and A. Mycielski, J. Alloys Compd. 426, 12 (2006). doi: 10.1016/j.jallcom.2006.02.004 CrossRefGoogle Scholar
  27. 27.
    J. Polit, E. M. Sheregii, J. Cebulski, B. V. Robouch, A. Marcelli, M. CestelliGuidi, M. Piccinini, A. Kisiel, E. Burattini, and A. Mycielski, J. Appl. Phys. 100, 013521 (2006). doi: 10.1063/1.2211368 CrossRefADSGoogle Scholar
  28. 28.
    J. Cebulski, E. M. Sheregii, J. Polit, A. Marcelli, B. Robouch, M. CastelliGuidi, M. Piccinini, and A. Kisiel, phys. stat. sol. c 4, 1462 (2007).CrossRefGoogle Scholar
  29. 29.
    P. Alberto, V. J. B. Torres, J. Coutinho, and P. R. Briddon, Physica B 376-377, 775 (2006). doi: 10.1016/j.physb.2005.12.194 CrossRefGoogle Scholar
  30. 30.
    J. P. Perdew, K. Burke, and M. Ernzerhof Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865 PubMedCrossRefADSGoogle Scholar
  31. 31.
    D. M. Ceperley and B. I. Adler, Phys. Rev. Lett. 45, 566 (1980). doi: 10.1103/PhysRevLett.45.566 CrossRefADSGoogle Scholar
  32. 32.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953 CrossRefADSGoogle Scholar
  33. 33.
    G. Kresse and D. Joubert, ibid. 59, 1758 (1999).CrossRefADSGoogle Scholar
  34. 34.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993)CrossRefADSGoogle Scholar
  35. 35.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994)CrossRefADSGoogle Scholar
  36. 36.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996)Google Scholar
  37. 37.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  38. 38.
    S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991). doi: 10.1103/PhysRevLett.67.2339 PubMedCrossRefADSGoogle Scholar
  39. 39.
    S. B. Zhang, J. Phys.: Condens. Matter 14, R881 (2002). doi: 10.1088/0953-8984/14/34/201 CrossRefADSGoogle Scholar
  40. 40.
    D. R. Lide, CRC Handbook of Chemistry and Physics, 88th edition (CRC Press/Taylor and Francis, Boca Raton, Fl, 2008).Google Scholar
  41. 41.
    S. Goettig and C. G. Morgan-Pond, Phys. Rev. B 42, 11743 (1990). doi: 10.1103/PhysRevB.42.11743 CrossRefADSGoogle Scholar
  42. 42.
    S. Lany, V. Ostheimer, H. Wolf, and Th. Wichert, Physica B 308, 958 (2001). doi: 10.1016/S0921-4526(01)00841-9 CrossRefADSGoogle Scholar
  43. 43.
    O. Madelung, Semiconductors:Data Handbook, 3rd edition (Springer, Berlin, 2004).Google Scholar
  44. 44.
    C. Stampfl and C. G. VandeWalle, Phys. Rev. B 65, 155212 (2002). doi: 10.1103/PhysRevB.65.155212 CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  2. 2.EIC Laboratories, Inc.NorwoodUSA

Personalised recommendations