Journal of Electronic Materials

, Volume 38, Issue 8, pp 1579–1592 | Cite as

Performance and Modeling of the MWIR HgCdTe Electron Avalanche Photodiode

  • Jeffrey Beck
  • Richard Scritchfield
  • Billy Sullivan
  • Jamie Teherani
  • Chang-Feng Wan
  • Mike Kinch
  • Martha Ohlson
  • Mark Skokan
  • Lewis Wood
  • Pradip Mitra
  • Mike Goodwin
  • Jim Robinson
Article

Abstract

The operation of the mid-wave infrared (MWIR) HgCdTe cylindrical electron injection avalanche photodiode (e-APD) is described. The measured gain and excess noise factor are related to the collection region fill factor. A two-dimensional diffusion model calculates the time-dependent response and steady-state pixel point spread function for cylindrical diodes, and predicts bandwidths near 1 GHz for small geometries. A 2 μm diameter spot scan system was developed for point spread function and crosstalk measurements at 80 K. An electron diffusion length of 13.4 μm was extracted from spot scan data. Bandwidth data are shown that indicate bandwidths in excess of 300 MHz for small unit cells geometries. Dark current data, at high gain levels, indicate an effective gain normalized dark density count as low as 1000 counts/μs/cm2 at an APD gain of 444. A junction doping profile was determined from capacitance–voltage data. Spectral response data shows a gain-independent characteristic.

Keywords

HgCdTe avalanche photodiode gain excess noise cylindrical spot scan diffusion length point spread function bandwidth fill factor collection efficiency dark current capacitance spectral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Beck, C.-F. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, J. Campbell, J. Electron. Mater. 35, 1166 (2006). doi:10.1007/s11664-006-0237-3 CrossRefADSGoogle Scholar
  2. 2.
    G. Perrais, O. Gravrand, J. Baylet, G. Destefanis and J. Rothman, J. Electron. Mater. 36, 963 (2007). doi:10.1007/s11664-007-0147-z CrossRefADSGoogle Scholar
  3. 3.
    M.B. Reine, J.W. Marciniec, K.K. Wong, T. Parados, J.D. Mullarkey, P.A. Lamarre, S.P. Tobin, K.A. Gustavsen, G.M. Willliams, J. Electron. Mater. 36, 1059 (2007). doi:10.1007/s11664-007-0172-y CrossRefADSGoogle Scholar
  4. 4.
    J. Beck, M. Woodall, R. Scritchfield, M. Ohlson, L. Wood, P. Mitra, and J. Robinson, J. Electron. Mater. 37, 1334 (2008). doi:10.1007/s11664-008-0433-4 CrossRefADSGoogle Scholar
  5. 5.
    M. Goodwin, J. Beck, L. Wood, C. Rau, R. Scritchfield, M. Skokan, M. Ohlson, M. Woodall, P. Mitra, and J. Robinson (2008 MSS Specialty Group Meeting on Detectors, Nellis AFB, NV, 4–7 February 2008)Google Scholar
  6. 6.
    M.A. Kinch, Proc. SPIE 4369, 566 (2001). doi:10.1117/12.445316
  7. 7.
    G. Perrais, J. Rothman, G. Destefanis, J.-P. Chamonal, J. Electron. Mater. 37, 1261 (2008). doi:10.1007/s11664-008-0459-7 CrossRefADSGoogle Scholar
  8. 8.
    G. Perrais, L. Mollard, J.-P. Chamonal, G. Destefanis, and J. Rothman, J. Electron. Mater. (2009, to be published)Google Scholar
  9. 9.
    M. Liu, S. Wang, J.C. Campbell, J.D. Beck, C. Wan, M.A. Kinch, J. Appl. Phys. 98, 074509 (2005). doi:10.1063/1.2060948 CrossRefADSGoogle Scholar
  10. 10.
    M.B. Reine, J.W. Marciniec, K.K. Wong, T. Parodos, J.D. Mullarkey, P.A. Lamarre, S.P. Tobin, R.W. Minich, K.A. Gustavsen, M. Compton, G.M. Williams, J. Electron. Mater. 37, 1376 (2008). doi:10.1007/s11664-008-0420-9 CrossRefADSGoogle Scholar
  11. 11.
    G.E. Stillman, C.M. Wolfe, Semicond. Semimet., 12, 291 (1981). doi:10.1016/S0080-8784(08)60150-7 CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Jeffrey Beck
    • 1
  • Richard Scritchfield
    • 1
  • Billy Sullivan
    • 1
  • Jamie Teherani
    • 1
  • Chang-Feng Wan
    • 1
  • Mike Kinch
    • 1
  • Martha Ohlson
    • 1
  • Mark Skokan
    • 1
  • Lewis Wood
    • 1
  • Pradip Mitra
    • 1
  • Mike Goodwin
    • 1
  • Jim Robinson
    • 1
  1. 1.DRS Technologies – Infrared Technologies DivisionDallasUSA

Personalised recommendations