Journal of Electronic Materials

, Volume 38, Issue 9, pp 1956–1961 | Cite as

p-Type PbTe Thermoelectric Bulk Materials with Nanograins Fabricated by Attrition Milling and Spark Plasma Sintering

  • Chia-Hung Kuo
  • Ming-Shan Jeng
  • Jie-Ren Ku
  • Shih-Kuo Wu
  • Ya-Wen Chou
  • Chii-Shyang HwangEmail author

This work reports a manufacturing process that combines attrition milling and spark plasma sintering (SPS) in the preparation of PbTe bulk materials with nanosize grains. The process involves milling raw PbTe ingots into nanocrystalline powders and subsequent compacting of these powders into dense bulk materials by spark plasma sintering. Sintered samples with relative densities of over 95% and grain sizes as small as 80 nm to 1 μm were obtained through this process. The thermoelectric properties of the samples were measured and compared with those of raw ingots at temperatures from 300 K to 400 K to demonstrate the influence of grain size on thermoelectric properties. The results reveal that reducing the grain size improved thermoelectric performance.


PbTe nanograins attrition milling spark plasma sintering Seebeck coefficient thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Rowe, CRC Handbook of Thermoelectrics, pp. 1, CRC, New York (1995)Google Scholar
  2. 2.
    G. S. Nolas, J. W. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, pp. 10, Springer-Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  3. 3.
    D. M. Rowe, Thermoelectrics Handbook: Micro to Nano, pp. 1–7, CRC, New York (2006), pp.1–7Google Scholar
  4. 4.
    H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007). doi: 10.1038/nmat1821 PubMedCrossRefADSGoogle Scholar
  5. 5.
    T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002). doi: 10.1126/science.1072886 PubMedCrossRefADSGoogle Scholar
  6. 6.
    K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004). doi: 10.1126/science.1092963 PubMedCrossRefADSGoogle Scholar
  7. 7.
    E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis, and M. G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005). doi: 10.1021/ja051653o PubMedCrossRefGoogle Scholar
  8. 8.
    K. Kishimoto, K. yamamoto and T. Koyanagi, Jpn. J. Appl. Phys. 42, 501 (2003). doi: 10.1143/JJAP.42.501 CrossRefADSGoogle Scholar
  9. 9.
    A. Kosuga, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys. Compd. 386, 315 (2005). doi: 10.1016/j.jallcom.2004.05.065 CrossRefGoogle Scholar
  10. 10.
    H. Wang, J. F. Li, C. W. Nan, and M. Zhou, Appl. Phys. Lett. 88, 092104 (2006). doi: 10.1063/1.2181197 CrossRefADSGoogle Scholar
  11. 11.
    S. Yoneda, E. Ohta, H. T. Kaibe, I. J. Ohsugi, I. Shiota and I. A. Nishida, Mater. Trans. 42, p 329 (2001). doi: 10.2320/matertrans.42.329 CrossRefGoogle Scholar
  12. 12.
    K. Kishimoto and T. Koyanagi, J. Appl. Phys. 92, 2544 (2002). doi: 10.1063/1.1499206 CrossRefADSGoogle Scholar
  13. 13.
    J. P. Heremans, C. M. Thrush, and D. T. Morelli, Phys. Rev. B 70, 115334 (2004). doi: 10.1103/PhysRevB.70.115334 CrossRefADSGoogle Scholar
  14. 14.
    J. Martin and G. S. Nolas, Appl. Phys. Lett. 90, 222112 (2007). doi: 10.1063/1.2745218 CrossRefADSGoogle Scholar
  15. 15.
    G. H. Blount, R. H. Bube, and A. L. Robinson, J. Appl. Phys. 41, 2190 (1970). doi: 10.1063/1.1659188 CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Chia-Hung Kuo
    • 1
  • Ming-Shan Jeng
    • 2
  • Jie-Ren Ku
    • 2
  • Shih-Kuo Wu
    • 2
  • Ya-Wen Chou
    • 2
  • Chii-Shyang Hwang
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Energy & Environment LaboratoriesIndustrial Technology Research InstituteLiujia ShiangTaiwan

Personalised recommendations