Journal of Electronic Materials

, Volume 38, Issue 5, pp 623–634 | Cite as

The Potential of the Perturbed Angular Correlation Technique in Characterizing Semiconductors

Open Access

Several experimental techniques are available to investigate materials but microscopic techniques based on hyperfine interaction form a subclass that can characterize materials at the smallest possible atomic scale. The interaction of the nuclear electromagnetic moments with the hyperfine fields arising from the extranuclear electronic charges and spin distributions forms the basis of hyperfine methods. In this review article, one of the hyperfine methods, known as perturbed angular correlation (PAC), has been described as it provides local-scale fingerprints about the formation, identification, and lattice environment of defects and/or defect complexes in semiconductors at the PAC probe site. In particular, the potential of the PAC technique has been demonstrated in terms of measured electric field gradient, its orientation, and the symmetry at the probe site for a variety of defects in semiconductors such as Si, InP, GaAs, InAs, ZnO, GaP, and InN.


Semiconductors perturbed angular correlation technique implantation defects 


  1. 1.
    G. Schatz and A. Weidinger, Nuclear Condensed Matter Physics: Nuclear Methods and Applications (Wiley, New York, 1996 2nd ed)Google Scholar
  2. 2.
    H. Frauenfelder and R.M. Steffen, Alpha, Beta and Gamma Ray Spectroscopy, ed. K. Siegbahn (Amsterdam: North Holland, 1965), p. 997Google Scholar
  3. 3.
    T. Wichert and E. Recknagel, Microscopic Methods in Metals, ed. U. Gonser (Berlin: Springer, 1986), p. 317Google Scholar
  4. 4.
    G.L. Catchen, MRS Bull. 20, 37 (1995)Google Scholar
  5. 5.
    Th. Wichert, Identification of Defects in Semiconductors. Semiconductors and Semimetals, Vol. 51B, ed. M. Stavola (London: Academic Press, 1998/1999), p. 297Google Scholar
  6. 6.
    Thomas Wichert, Manfred Deicher, Nucl. Phys. A 693, 327 (2001).doi: 10.1016/S0375-9474(00)00688-6 CrossRefADSGoogle Scholar
  7. 7.
    M. Deicher, Hyp. Int. 79, 681 (1993).doi: 10.1007/BF00567596 CrossRefADSGoogle Scholar
  8. 8.
    Th. Wichert and M. L. Swanson, J. Appl. Phys. 66, 3026 (1989)doi: 10.1063/1.344188 CrossRefADSGoogle Scholar
  9. 9.
    Th. Wichert, M.L. Swanson and A.F. Quenneville, Phys. Rev. Lett. 57, 1757 (1986).doi: 10.1103/PhysRevLett.57.1757 PubMedCrossRefADSGoogle Scholar
  10. 10.
    G. Tessema, R. Vianden, Appl. Phys. A 81, 1471 (2005).doi: 10.1007/s00339-005-3249-6 CrossRefADSGoogle Scholar
  11. 11.
    H. Haesslein, R. Sielemann, and Ch. Zistl, Phys. Rev. Lett. 80, 2626 (1998).doi: 10.1103/PhysRevLett.80.2626 CrossRefGoogle Scholar
  12. 12.
    G. Tessema, R. Vianden, J. Phys. Condens. Matter 15, 5297 (2003).doi: 10.1088/0953-8984/15/30/311 CrossRefADSGoogle Scholar
  13. 13.
    V. Ostheimer, S. Lany, J. Hamann, H. Wolf, Th. Wichert, and ISOLDE Collaboration, Phys. Rev. B 68, 235206 (2003). doi: 10.1103/PhysRevB.68.235206 Google Scholar
  14. 14.
    J. C. Austin, Wm. C. Hughes, B. K. Patnaik, R. Triboulet, and M. L. Swanson; J. Appl. Phys. 86, 3576 (1999)doi: 10.1063/1.371261 CrossRefGoogle Scholar
  15. 15.
    K. Lorenz, F. Ruske, and R. Vianden, Appl. Phys. Lett. 80, 4531 (2002).doi: 10.1063/1.1485117 CrossRefADSGoogle Scholar
  16. 16.
    M. Risse and R. Vianden, J. Appl. Phys. 93, 2648 (2003).doi: 10.1063/1.1539288 CrossRefADSGoogle Scholar
  17. 17.
    R. Keller, M. Deicher, W. Pfeiffer, H. Skudlik, D. Steiner, Th. Wichert, Phys. Rev. Lett. 65, 2023 (1990).doi: 10.1103/PhysRevLett.65.2023 PubMedCrossRefADSGoogle Scholar
  18. 18.
    H. Skudlik, M. Deicher, R. Keller, R. Magerle, W. Pfeiffer, P. Pross, E. Recknagel, Th. Wichert, Phys. Rev. B 46, 2159 (1992).doi: 10.1103/PhysRevB.46.2159 CrossRefADSGoogle Scholar
  19. 19.
    M. Gebhard, B. Vogt and W. Witthuhn Phys. Rev. Lett. 67, 847 (1991)doi: 10.1103/PhysRevLett.67.847 PubMedCrossRefADSGoogle Scholar
  20. 20.
    M. Deicher and W. Pfeiffer, Hydrogen in Compound Semiconductors, ed. S.J. Pearton (Material Science Forum 148–149, Trans Tech Publications, 1994), p. 481Google Scholar
  21. 21.
    J.M. Adam, G. L. Catchen, J. Fu and D. L. Miller, Surf. Sc. 337, 118 (1995).doi: 10.1016/0039-6028(95)00532-3 CrossRefADSGoogle Scholar
  22. 22.
    G.L.Catchen, D. Loubychev and R. Platzer, Hyp. Int. 136/137, 633 (2001).doi: 10.1023/A:1020586808228 CrossRefADSGoogle Scholar
  23. 23.
    J. Lohmuller, H·H. Bertschat, H. Granzer, H. Haas, G. Schatz, W.-D. Zeitz, ISOLDE Collaboration, Surf. Sci. 360, 213 (1996).doi: 10.1016/0039-6028(96)00682-6 CrossRefGoogle Scholar
  24. 24.
    Th. Agne, Z. Guan, X. M. Li, H. Wolf, and Th. Wichert, H. Natter and R. Hempelmann, Appl. Phys. Lett. 83, 1204 (2003).doi: 10.1063/1.1598289 CrossRefADSGoogle Scholar
  25. 25.
    W. Sato, Y. Itsuki, S. Morimoto, H. Susuki, S. Nasu, A. Shinohara, and Y. Ohkubo, Phys. Rev. B 78, 045319 (2008).doi: 10.1103/PhysRevB.78.045319 CrossRefADSGoogle Scholar
  26. 26.
    N. Santen and R. Vianden, Mater. Sci. Eng. B 154–155, 126 (2008)Google Scholar
  27. 27.
    L. Hemmingsen and T. Butz, Application of Physical Methods to Inorganic and Bioinorganic Chemistry. Encyclopedia of Inorganic Chemistry Books, ed. R.A. Scott (2007)Google Scholar
  28. 28.
    Y. Ohkubo, Y. Murakami, W. Sato and A. Yokoyama; J. Nucl. Radiochem. Sci. 8, 79 (2007)Google Scholar
  29. 29.
    S. Zhu, Y. Zheng, Y. Zuo, D. Zhou, D.Yuan, A. Li, Z. Wang, X. Duan, M.Liu and Y. Li, J. Radioanal. Nucl. Chem. 272, 615 (2007).doi: 10.1007/s10967-007-0634-y CrossRefGoogle Scholar
  30. 30.
    G.S. Collins, S.L. Shropshire, J. Fan, Hyp. Int. 62, 1 (1990).doi: 10.1007/BF02407659 CrossRefADSGoogle Scholar
  31. 31.
    H·H. Bertschat, K. Potzger, A. Weber, W.-D. Zeitz, Eur. Phys. J. A 13, 233 (2002)ADSGoogle Scholar
  32. 32.
    L. G. Shpinkova, A. A. Sorokin, B. A. Komissarova, G. K. Ryasnyi, V. N. Kulakov and S. M. Nikitin, Meas. Tech. 42, 490 (1999).doi: 10.1007/BF02504474 CrossRefGoogle Scholar
  33. 33.
    A.W. Carbonari, J. Mestnik, R.N. Saxena, R. Dogra, J. A. H. Coaquira, Hyp. Int. 136, 345 (2001).doi: 10.1023/A:1020533708556 CrossRefADSGoogle Scholar
  34. 34.
    R. Dogra, A. C. Junqueira, R. N. Saxena, A. W. Carbonari, J. Mestnik-Filho, and M. Moralles, Phys. Rev. B 63, 224104 (2001).doi: 10.1103/PhysRevB.63.224104 CrossRefADSGoogle Scholar
  35. 35.
    H.E. Mahnke, Nucl. Phys. A 588, 221c (1995). doi: 10.1016/0375-9474(95)00143-O CrossRefADSGoogle Scholar
  36. 36.
    A. Baudry, P. Boyer and P. Vulliet, Hyp. Int. 13, 263 (1983).doi: 10.1007/BF01027256 CrossRefADSGoogle Scholar
  37. 37.
    M. Balcerzyk, M. Moszynski, M. Kapusta, Nucl. Inst. Methods A 537, 50 (2005).doi: 10.1016/j.nima.2004.07.233 CrossRefADSGoogle Scholar
  38. 38.
    S.-b. Ryu, S·K. Das, and T. Butz, Phys. Rev. B 77, 094124 (2008).doi: 10.1103/PhysRevB.77.094124 CrossRefADSGoogle Scholar
  39. 39.
    C. Herden, J. Röder, J.A. Gardner, K.D. Becker, Nucl. Inst. Methods A 594, 155 (2008). 10.1016/j.nima.2008.05.001 CrossRefADSGoogle Scholar
  40. 40.
    A. R. Arends, C. Hohenemser, F. Pleiter, H. de Waard, L. Chow and R. M. Suter, Hyp. Int. 8, 191 (1980). doi: 10.1007/BF01026869 CrossRefGoogle Scholar
  41. 41.
    D.A. Brett, R. Dogra, A.P. Byrne, J. Mestnik-Filho, M. C. Ridgway, Phys. Rev. B 72, 193202 (2005). doi: 10.1103/PhysRevB.72.193202 CrossRefADSGoogle Scholar
  42. 42.
    R. Dogra, D.A. Brett, A.P. Byrne and M.C. Ridgway, Hyp. Int. 33, 177 (2007)Google Scholar
  43. 43.
    R. Dogra, S.K. Shrestha, A.P. Byrne, M.C. Ridgway, A.V.J. Edge, R. Vianden, J. Penner, and H. Timmers, J. Phys. Condens. Matter 17, 6037 (2005)Google Scholar
  44. 44.
    N. Achtziger, S. Deubler, D. Forkel, H. Wolf, W. Witthuhn, Appl. Phys. Lett. 55, 766 (1989). doi: 10.1063/1.102265 CrossRefADSGoogle Scholar
  45. 45.
    R. Dogra, A.P. Byrne, and M.C. Ridgway, Opt. Mater. (2009) (accepted)Google Scholar
  46. 46.
    R. Dogra, Z.S. Hussain, A.K. Sharma, Mater. Charact. 58, 652 (2007). doi: 10.1016/j.matchar.2006.07.014 CrossRefGoogle Scholar
  47. 47.
    E. Bezakova, A.P. Byrne, C.J. Glover, M.C. Ridgway, and R. Vianden, Appl. Phys. Lett. 75, 1923 (1999).doi: 10.1063/1.124872 CrossRefGoogle Scholar
  48. 48.
    R. Dogra, A.P. Byrne, Z.S. Hussain and M.C. Ridgway, Nucl. Instr. Methods B 266, 1460 (2008).doi: 10.1016/j.nimb.2007.11.058 CrossRefADSGoogle Scholar
  49. 49.
    R. Dogra, A.P. Byrne, L.L. Araujo and M.C. Ridgway, Nucl. Instr. Methods B 257, 355 (2007). doi: 10.1016/j.nimb.2007.01.137 CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Beant College of Engineering & TechnologyGurdaspurIndia
  2. 2.Department of Nuclear Physics, Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia
  3. 3.Department of Physics, Faculty of ScienceAustralian National UniversityCanberraAustralia
  4. 4.Department of Electronic Materials Engineering, RSPhysSEAustralian National UniversityCanberraAustralia

Personalised recommendations