Journal of Electronic Materials

, Volume 38, Issue 7, pp 1268–1272 | Cite as

Thermoelectric Materials with Potential High Power Factors for Electricity Generation

  • Qiang LiEmail author
  • Zhiwei Lin
  • Juan Zhou

The thermoelectric figure of merit ZT of materials limits the performance of a thermoelectric power generator. To date, the main gains from the worldwide effort in either engineered bulk materials or low-dimensional systems have been mostly based on the strategies of reducing the thermal conductivity. We explore several bulk thermoelectric materials that have respectable mecha- nical strength and chemical stability at elevated temperatures for potential power generation. Our strategy is to first explore the avenue of significantly increasing the power factor (PF), then the avenue of lowering thermal conductivity, perhaps by nanocompositing. We examine the layered cobaltates with sharp resonant peaks in the electronic density of states near the Fermi energy level due to strong electron correlation. We suggest that electron correlation may be used as a new tuning parameter to significantly increase the PF. We also report that a substantial increase (over 30%) in PF can be achieved in filled skutterudites (such as p-type CeFe4Sb12) through nonequilibrium synthesis by rapid conversion of the amorphous materials made by the melt spinning to single-phase crystalline materials under pressure. This process, in conjunction with the rattling to lower the lattice thermal conductivity, could further enhance the ZT values of the filled skutterudites.


Thermoelectrics filled skutterudite cobaltate melt spinning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Drs. Jihui Yang and Xun Shi of GM R&D Center, and Tony Valla of␣Brookhaven National Lab for very productive collaboration. This work was in part supported by␣the US Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC-02-98CH10886.


  1. 1.
    T.M. Tritt and M.A. Subramanian, MRS Bulletin, 31 188 (March 2006).Google Scholar
  2. 2.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, “Thermoelectrics: Basic Principles and New Materials Development (Springer, New York 2001).zbMATHGoogle Scholar
  3. 3.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) doi: 10.1103/PhysRevB.47.12727 CrossRefADSGoogle Scholar
  4. 4.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001). doi: 10.1038/35098012 PubMedCrossRefADSGoogle Scholar
  5. 5.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002). doi: 10.1126/science.1072886 PubMedCrossRefADSGoogle Scholar
  6. 6.
    G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, Boca Raton, FL, 1995) p. 407.Google Scholar
  7. 7.
    K·F. Hsu, S. Loo, F. Gao, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M. Kanatzidis, Science 303, 8181 (2004) doi: 10.1126/science.1092963 CrossRefGoogle Scholar
  8. 8.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, International Materials Review, Vol. 48, ed. M.J. Bevis (London: Institute of Materials Journals, 2003), pp. 45–66.Google Scholar
  9. 9.
    D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, Phys. Rev. B 51, 9622 (1995). doi: 10.1103/PhysRevB.51.9622 CrossRefADSGoogle Scholar
  10. 10.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleu-rial, and P. Gogna, MRS Symposium Proceedings, Vol. 886, ed. J. Yang, T.P. Hogan, R. Funahashi, and G.S. Nolas (Pittsburgh, PA: Materials Research Society, 2006), p. 3.Google Scholar
  11. 11.
    I. Terasaki, Y. Sasago, and K. Uchokura, Phys. Rev. B 56, 12685 (1997). doi: 10.1103/PhysRevB.56.R12685 CrossRefADSGoogle Scholar
  12. 12.
    Q. Li, MRS Symposium Proceedings, Vol. 886, ed. J. Yang, T.P. Hogan, R. Funahashi, and G.S. Nolas (Pittsburgh, PA: Materials Research Society, 2006), p. 23.Google Scholar
  13. 13.
    R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys Pt. 2 39, L1127 (2000). doi: 10.1143/JJAP.39.L1127 CrossRefADSGoogle Scholar
  14. 14.
    A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, and B. Raveau, Phys. Rev. B 62, 166 (2000). doi: 10.1103/PhysRevB.62.166 CrossRefADSGoogle Scholar
  15. 15.
    E. Dagotto, Science 309, 257 (2005). doi: 10.1126/science.1107559 PubMedCrossRefADSGoogle Scholar
  16. 16.
    T. Valla, P.D. Johnson, Z. Yusof, B. Wells, Q. Li, S.M. Loureiro, R.J. Cava, M. Mikami, Y. Mori, M. Yoshimura, ad T. Sasaki, Nature 417, 627 (2002). doi: 10.1038/nature00774 PubMedCrossRefADSGoogle Scholar
  17. 17.
    B·C. Sales, D.B. C. Sales, D. Mandrus, B·C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56 15081 (1997). doi: 10.1103/PhysRevB.56.15081 CrossRefADSGoogle Scholar
  18. 18.
    D.M. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995). doi: 10.1063/1.358552 CrossRefADSGoogle Scholar
  19. 19.
    Q. Li, Unpublished results.Google Scholar
  20. 20.
    X. Shi, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005). doi: 10.1103/PhysRevLett.95.185503 PubMedCrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Condensed Matter Physics and Materials Science DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations